A Friction Database for Space Component Design

Published in Research Data
A Friction Database for Space Component Design
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Read the paper

SpringerLink
SpringerLink SpringerLink

Ambient and Nitrogen Environment Friction Data for Various Materials & Surface Treatments for Space Applications - Tribology Letters

A multivariate tribological evaluation of candidate materials, surface treatments and dry film lubricants is needed for design of moving mechanical components that function reliably in extreme conditions, including for long-duration space missions. In this study, linear reciprocating or unidirectional sliding friction data was collected using ball-on-flat tests. The balls were hardened 440C stainless steel (either uncoated or sputtered with MoS2) and flat surfaces were 440C stainless steel, Nitronic 60 stainless steel or Ti6Al4V titanium alloy with various surface treatments and/or dry film lubricants. Surface treatments included anodizing, nitriding and electrical discharge machining. The dry film lubricants included Microseal 200-1, sputtered MoS2 and a nano-composite coating i-Kote. The data contains applied normal load, measured friction force, calculated coefficient of friction, ball position, ambient temperature and relative humidity during testing. Tests were performed at different peak Hertzian contact pressure conditions ranging from 300 to 2000 MPa. Data is also available for flat surfaces that were vacuum baked at 150 °C after surface treatment and dry film coating as well as samples tested in inert gas (nitrogen) environment. This data can be used both to fundamentally understand the tribological properties of different material systems as well as to enable design of components for specific applications, conditions and duty cycles. Graphical Abstract

Space missions are getting longer and farther away from Earth as we push the limits of our space endeavors. To date, NASA has sent five rovers (most recently, Perseverance) and a helicopter (Ingenuity) to Mars, and has future missions planned for Europa, one of the four moons of planet Jupiter. With each undertaking having more deliverables than its predecessor, the stakes are even higher for success. This success relies on proper function of moving mechanical components in, for example, drive systems, scientific instrumentation, and sample caching systems. These components require some form of lubrication to function reliably and efficiently, given the lack of serviceability and limited sources of energy in space or distant planets. Liquid lubricants (oils) cannot be used in this scenario because of their tendency to thicken or freeze at sub-zero temperatures. For some components, like those in drive systems, vacuum greases that have low volatility and outgassing are used to provide lubrication. However, vacuum greases are not a one stop solution for other mechanical components, for instance, those in scientific instruments and sample (rock and soil samples) caching systems, which are highly sensitive to potential contamination from greases.

This is where dry film lubricants (DFLs) come in. DFLs are mostly thin coatings of solid materials bonded to surfaces of moving components. As the name implies, these lubricants do not have volatile components nor do they flow like oils and greases. DFLs provide a low-shear strength layer on the surface which is designed to last for the duration of the mission. Longer missions and harsher environments call for new and better DFLs. The longevity of DFLs partly depends on their adhesion to the substrate, where stronger is better. Adhesion also depends on the substrate, but component materials cannot be selected solely for their adhesive characteristics. For example, some materials may have desirable properties such as high strength to weight ratio and corrosion resistance, but have low adhesion to DFLs. Further, in some mechanisms, component surfaces are subjected to thermochemical or electrochemical treatments such as nitriding and anodizing.

To characterize DFLs for these various surfaces, our research team at the University of California Merced collaborated with scientists at Jet Propulsion Lab to perform a comprehensive set of tribological tests. This project was particularly exciting because part of the testing contributed to design decisions for the sample caching system on the Mars Perseverance rover.

Specifically, we performed over 150 tests to collect friction performance data using a tribometer (seen in Figure 1, left) for different substrate materials including 440C stainless steel, Nitronic 60 stainless steel and titanium alloy (Ti6Al4V), sliding against 440C stainless steel ball (uncoated or sputter coated with MoS2). Substrates underwent different surface treatments, including anodizing (with or without PTFE impregnation) nitriding and electrical discharge machining. Some were coated with DFLs, including Microseal 200-1, sputtered MoS2 and i-Kote. Some friction tests were performed in inert gas environment (nitrogen) to simulate space conditions or after baking the samples in vacuum at 150 °C for one hour.   

Figure 1. (Left) A ball-on-disk setup on the tribometer to collect friction data. (Right) A custom designed inert environment chamber with oxygen, humidity, and temperature sensors.

Data collection also involved fabrication of custom test specimen that were processed using a variety of commercially available techniques provided by multiple different companies and performing tribological experiments across a range of operating parameters and environments. To perform inert environment (nitrogen) tests, we designed and fabricated a custom enclosure with multiple sensors to track humidity, oxygen, and temperature during the test duration, that was retrofitted onto the tribometer (shown in Figure 1, right). Running such experiments, particularly with the material and surface treatments studied here, is both expensive and labor-intensive. This data may be valuable to anyone considering corrosion resistant, anti-galling surface treatments and tribologically superior dry film lubricants in their mechanical components, particularly for space applications.

Generally, vehicles that will operate in the extreme conditions of space need to satisfy multiple design criteria, some of which are conflicting. Selecting the right material for a given tribological application is facilitated by a large set of frictional performance data for different material candidates, DFLs, and surface treatments at different loading, speed, and environmental conditions to identify optimal design strategies. Such data can also provide fundamental insights into the tribological behavior of materials, surfaces, and coatings.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Research Data
Research Communities > Community > Research Data

Related Collections

With collections, you can get published faster and increase your visibility.

Text and speech corpora for natural language processing and corpus linguistics

This Collection presents a series of annotated text and speech corpora alongside linguistic models tailored for CL and NLP applications. These resources aim to enrich the arsenals of CL and NLP users and facilitate interdisciplinary research.

Publishing Model: Open Access

Deadline: Apr 24, 2025

Data for epigenetics research

This Collection presents data within epigenetics research including, but not limited to, data generated through techniques such as ChIP, bisulphite, nanopore and RNA sequencing, single-cell epigenetics/epigenomics, spatial genomics/epigenomics, and the role of non-coding RNAs in epigenetic modulation.

Publishing Model: Open Access

Deadline: Dec 28, 2024