The United States Energy Information Administration (EIA) AE2020 Reference Case projects that, by 2050, 79% of all energy generated will be derived from either wind or solar photovoltaics (PV)1. That is great news for the planet, but while renewable energy technologies are extremely effective in generating clean energy, they are intermittent. Wind and solar resources are often not always available at the exact moment we need electricity. This creates a classic challenge to renewable energy—addressing the mismatch between the supply and demand curves, often termed as the “duck curve” problem. High power and energy density energy storage can play a critical role in ensuring that renewable energy can address this challenge and maintain its energy production penetration projections. Understanding that the long-term viability of renewable energy is inextricably linked to advancements in energy storage, we became passionate about investigating existing energy storage technologies, understanding their shortcomings, and investigating how to address these shortcomings. One such technology, phase change material thermal energy storage, in particular, stood out to us.
Phase Change Materials (PCMs) have been proposed as a means of thermal energy storage for well over a century. In these systems, thermal energy can be stored or released via the latent heat absorbed or released in the PCM. PCMs offer a wide variety of opportunities for thermal energy storage, whether in transportation, energy generation, or thermal management. While PCMs represent a significant opportunity for cost-effective energy storage, a challenge to their implementation is their relatively poor transport properties (i.e., low thermal conductivity) for typical PCMs such as paraffin wax and ice2. A second challenge to the application of PCMs is their rapid melt front propagation away from the energy source, which increases the source-to-interface thermal resistance over time. This increasing conductive thermal resistance places a limit on the maximum power density that phase-change thermal storage can achieve3. Our study introduces a novel method to address both of these challenges.
When approaching this challenge, the natural question that presents itself is, “How can this thermal resistance be reduced while also ensuring minimal energy loss and added cost?” We could consider means by which thinner layers of phase change material could be applied over a larger surface area. However, this sort of solution has a much more limited set of end-uses due to the sheer area required. Furthermore, this solution would present a practical limit on the energy density achievable by the thermal energy storage system. Instead, we looked to turn the challenge posed by melt front propagation into an advantage by considering the increased mobility of the molten PCM when compared to solid PCM. We began considering ways in which this melted liquid PCM could be drained from the system while simultaneously pushing the solid PCM closer to the heat source. A mechanism that accomplished both of these goals is dynamic close-contact melting via our pressurized PCM (dynPCM) concept.
In our system, an external force is exerted on the solidified PCM to compress it against a heat source, melting the solidified PCM to a predetermined melt thickness and draining the melted PCM out of the system. Liquid PCM is then pumped back into the void area, optimizing the solidification front thickness as well, and allowing for cyclical operation. This approach not only allows us to achieve higher power and energy density thermal energy storage when compared with conventional methods, it enables a robust temperature control mechanism, which makes our technology suitable for thermal management applications. Our preliminary modeling results showed that the concept was promising and able to achieve high heat fluxes that could be held constant over time (see Fig. 1).

To experimentally validate the promising findings observed in our modeling study, we built an experimental setup using paraffin wax, a cost effective and widely available PCM. We imposed an external force on the PCM and provided a constant heat flux to the system to measure the steady-state temperature required to maintain that applied heat flux. The results confirmed our analytical findings, showing that, even at higher applied heat fluxes (> 3W/cm2), we were able to maintain a stable base temperature in contrast to what is achievable using conventional PCMs. We also tested thermal energy storage cycling using our dynPCM, which showed that the system was consistently able to lower a heat source temperature of 110°C to an equilibrium temperature of 61°C once the PCM was applied to the heat source.
If you would like to learn more about this work, please see the original article at:
https://www.nature.com/articles/s41560-022-00986-y
References
[1] Energy Information Administration, "Renewable Energy Generation, Including End Use".
[2] Mohamed, S.A. et al, Renewable and Sustainable Energy Rev., vol. 70, pp. 1072-1089, 2017.
[3] Woods, J. et al. Rate capability and Ragone plots for phase change thermal energy storage. Nat. Energy 1–8 (2021).
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in