Cultured meat platform developed through the structuring of edible microcarrier-derived microtissues with oleogel-based fat substitute

Cultured meat platform developed through the structuring of edible microcarrier-derived microtissues with oleogel-based fat substitute
Like

Cultured meat, the in vitro production of meat from isolated farm animal cells using tissue engineering techniques, is considered an alternative to meat, thus providing meat-like structures with similar eating experience and nutritional values to animal-derived meat. Aiming for a low environmental impact and enhanced animal welfare, this alternative not only offers an available protein source for the world’s growing population but also a more humane and sustainable one.

In the collaborative research by Prof. Machluf, Prof Fishman, and Prof. Davidovich-Pinhas from the Technion- Israel Institute of Technology, the researchers address some of the major technological challenges facing the cultured meat field i.e., the development of technological solutions for scalable cell expansion, cell scaffolding, and cell-to-meat processing. The researchers introduce a new approach for the development of diverse cultured meat products, based on edible microcarriers-derived microtissues in combination with oleogel-based fat substitute (Figure 1). In this approach, cell expansion is carried out using microcarriers, which act as scaffolds for cell attachment and proliferation, thus enabling a scalable process in bioreactors. Since the microcarriers were designed from edible materials, the entire cellularized microcarriers (microtissues) can be directly incorporated into the final cultured meat product without requiring any costly cell harvesting steps. These microtissues serve as building blocks to produce various cultured meat products through cell-to-meat processing approaches. In the present research, biological approaches such as enzymatic crosslinking and ECM deposition (Figure 2) were applied as well as physical approaches such as pressure and homogenization.  

Figure 1. Schematic illustration of the cultured meat platform. Edible microcarrier-derived microtissues are first produced in a scalable bioreactor and then undergo processing such as aggregation or homogenization. The processed cellular mass is further incorporated with an oleogel-based fat substitute followed by food processing methodologies to generate CM prototypes. Created with BioRender.com.

Another essential building block of cultured meat is a fat substitute, which contributes to its tenderness and juiciness as well as to the overall taste. To this end, an oleogel-based fat substitute was developed, incorporated with plant protein. The developed formulation exhibited comparable appearance, color, and hardness to beef fat with better nutritional values. Furthermore, due to its protein shell, the fat substitute could be easily combined with the protein-rich microtissues into a coherent structure.

Two types of cultured meat prototypes are introduced in the paper: layered cultured meat and burger-like cultured meat. The layered cultured meat prototype was produced based on microtissue aggregates that supported better stiffness and nutritional values, while the burger-like cultured meat utilized homogenized microtissues to imitate the marbling appearance of animal-derived meat.

Altogether, taking a thorough approach, this work establishes the technological basis for a unique cultured meat platform that may broaden the applicability of cultured meat products and accelerate their commercial production.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Subscribe to the Topic

Biotechnology
Life Sciences > Biological Sciences > Biotechnology

Related Collections

With collections, you can get published faster and increase your visibility.

Applied Sciences

This collection highlights research and commentary in applied science. The range of topics is large, spanning all scientific disciplines, with the unifying factor being the goal to turn scientific knowledge into positive benefits for society.

Publishing Model: Open Access

Deadline: Ongoing

Pre-clinical drug discovery

We welcome studies reporting advances in the discovery, characterization and application of compounds active on biologically or industrially relevant targets. Examples include emerging screening technologies, the development of small bioactive compounds/peptides/proteins, and the elucidation of compound structure-activity relationships, target interactions and mechanism-of-action.

Publishing Model: Open Access

Deadline: Mar 31, 2024