In situ generation of formyl fluoride for Pd-catalyzed fluoro-carbonylation of aryl, vinyl, and heteroaryl iodides

Acyl fluorides have gained much attention as robust and versatile synthetic tools in synthetic chemistry. While several synthetic routes to acyl fluorides have been reported, a procedure involving the direct insertion of the "fluoro-carbonyl" moiety using a single reagent has not yet been realized.
Published in Chemistry
In situ generation of formyl fluoride for Pd-catalyzed fluoro-carbonylation of aryl, vinyl, and heteroaryl iodides
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Before this, the synthetic routes to R-COFs are categorized into two groups. The first group, which involves the fluorination of carboxylic acids or their derivatives, including aldehydes via deoxyfluorinations, halogen-exchange reactions, or C–H activation reactions, is the central area of the traditional research (type I, cleavage 1 in Fig. 1) The other group includes step-wise fluoro-carbonylation reactions of organic halides using a combination of toxic gaseous carbon monoxide (CO) or more stable alternative sources of CO, and fluorinating reagents (type II, cleavages 1 and in Fig.1).

                                                                 Fig.1

For common aromatic halides, the ideal synthesis method is to use fluorine atoms and carbon monoxide moieties directly into the site of the acid chloride instead of using highly toxic carbon monoxide for simultaneous fluorination. Formyl fluoride, as the most straightforward kind of acyl fluoride, grabbed our attention. From our experience in fluorine chemistry research, we thought difluoromethoxy anion (–OCF2H) should decompose into formyl fluoride by releasing a fluoride anion (F). Thus, we designed a type III (in Fig.1) strategy based on the fluoride-catalyzed in-situ generation of formyl fluoride, followed by a cross-coupling reaction with aryl halides in the presence of a Pd-catalyst.

We reported the preparation of acyl fluorides by palladium-catalyzed fluoro-carbonylation of aryl, vinyl, and heteroaryl iodides using 2-(difluoromethoxy)-5-nitropyridine under CO-free conditions. A wide variety of acyl fluorides are efficiently and safely obtained in high yield (up to 99%).

Further investigations into the extension of this fluoro-carbonylation strategy to generate more complex substrates. Furthermore, we plan to search for a large-scale supply method that can be widely used by the general public.

Tips: If you want a high-efficiency method to separate products in a chromatography column, you should first choose a good pump.

You can read more about our research here: Communications Chemistry, Volume 3, Article number 59 (2020), https://www.nature.com/articles/s42004-020-0304-3 by Yumeng Liang, Zhengyu Zhao & Norio Shibata.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Chemistry
Physical Sciences > Chemistry

Related Collections

With collections, you can get published faster and increase your visibility.

f-block chemistry

This Collection aims to highlight recent progress in f-element chemistry, encompassing studies on fundamental electronic structure, advances in separation chemistry, advances in coordination and organometallic chemistry, and the application of f-element compounds in materials science and environmental technologies.

Publishing Model: Open Access

Deadline: May 31, 2025

Nucleic acid chemistry

This Collection aims to offer insight and inspiration for nucleic acid chemistry, focusing on the structure, function, generation, modification, characterization, as well as application of nucleic acids.

Publishing Model: Open Access

Deadline: May 31, 2025