Infrared LEDs for spectroscopy applications realized by cooperating lanthanide ions

Radiative decay of a Eu-to-Tb charge transfer state in calcium sulfide gives rise to a broad emission band, ranging from the deep red to the near-infrared.
Infrared LEDs for spectroscopy applications realized by cooperating lanthanide ions

During the last decade, the lighting market has witnessed a disruption. Energy-consuming incandescent and potentially harmful fluorescent bulbs have made place for more sustainable and economic LED bulbs, based on light-emitting diodes. Next to the impressive reduction in global power consumption, new functionalities are possible due to the flexible design of LEDs.

The desired color can be finetuned by carefully designing the components of the LED, either the blue-emitting nitride light-emitting diode, or the blend of luminescent materials (a.k.a. phosphors) that partially convert this blue light to longer wavelengths, as is the case in common LED lamps. Next to the success of those white phosphor-converted LEDs, this technology also allows for more specialized and smarter applications. In particular, a recent interest has emerged for broadband infrared (IR) LEDs that find their way towards numerous spectroscopic applications. On the high-end side, medicine comes into the picture where IR light is proposed for imaging, but also for tissue analysis during medical interventions and examinations. More daily applications will be found in future smartphones that are able to analyze food, can remotely assess freshness, or exclude the presence of specific allergens. These emerging applications require new phosphors that convert blue light into a broad spectrum of IR wavelengths.

Infrared emitting phosphors based on single emitting ions, like a transition metal or a lanthanide ion, are already available. Unfortunately these materials fail at simultaneously being efficiently excitable by the blue pumping LEDs, as well as featuring a broad emission band that covers a sufficiently wide emission range required for the spectroscopic applications.

In our article, a new luminescence mechanism, yielding broadband IR emission, is described. We discovered this new IR emission by adding two different lanthanide ions, Eu2+ and Tb3+, to a specific crystal, namely calcium sulfide (CaS). A range of analytical and spectroscopic techniques were applied to show that the IR emission emerges as a cooperative effect between the Eu2+ and Tb3+ dopants, as the single ions only give green and red emission, respectively. Quantum mechanical calculations of the wavefunctions and excited state energies of the dopants and their clusters revealed that the IR emission is associated with an electron transfer between Eu2+ and Tb3+, forming a transient Eu3+-Tb2+ pair. To date, it was supposed that such charge-transfer states could only quench the common luminescence pathways. Here it is shown that they can also induce new types of luminescent transitions, provided that several microscopic conditions are fulfilled as explained by the structure-property relations following from our calculations.

Finally, the prepared CaS:Eu2+,Tb3+ phosphor was applied into a broadband IR emitting LED. An eye-catching bandwidth of 430 nm is achieved at a radiant power of 38 mW. These figures surpass the current state-of-the-art, yet there is still room for improvement in terms of spectrum and efficiency. Nevertheless, dopant-to-dopant-charge-transfer IR luminescence is a promising newcomer that should be on everyone’s watch list.

This work was recently published in Nature Communications:

“Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence”, Nature Communications (2020).

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Subscribe to the Topic

Electrical and Electronic Engineering
Technology and Engineering > Electrical and Electronic Engineering

Related Collections

With collections, you can get published faster and increase your visibility.

Biomedical applications for nanotechnologies

Overall, there are still several challenges on the path to the clinical translation of nanomedicines, and we aim to bridge this gap by inviting submissions of articles that demonstrate the translational potential of nanomedicines with promising pre-clinical data.

Publishing Model: Open Access

Deadline: Dec 31, 2023

Applied Sciences

This collection highlights research and commentary in applied science. The range of topics is large, spanning all scientific disciplines, with the unifying factor being the goal to turn scientific knowledge into positive benefits for society.

Publishing Model: Open Access

Deadline: Ongoing