Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity

Energy absorption mechanical metamaterials have been the subject of intense interest because they offer exciting opportunities for highly efficient absorption of mechanical energy, which is crucial for several applications. The energy absorbed by a material is given by the integral of the plateau stress and the failure or densification strain. In most cases, unfortunately, these properties are substantially in contradictory, i.e., high yield or fracture strength is generally gained at the price of low failure strain, and vice versa. For a mechanical metamaterial, its energy absorption capacity is essentially dominated by the material’s properties, including size- and microstructure-induced enhancement, and architectural design. Metals possess natural high strength and high ductility and thus are unparallel candidates for the pursuit of high energy absorption capacity. It is reasonable to speculate that higher energy absorption capacity could be pursued with nanobeams structured metals under properly designed architecture. Up till now, however, such metamaterials have seldom been reported. Herein, we report gold and copper quasi-body centered cubic (quasi-BCC) nanolattices with the diameter of the nanobeams as small as 34 nm.
The gold and copper quasi-BCC nanolattices are prepared by ion track technology1 and their mechanical properties are studied by compression tests (Fig. 1). Unexpectedly, the yield strengths of Au-34 and Cu-34 quasi-BCC nanolattices have high values, i.e., 107±11 MPa for gold and 153±15 MPa for copper, which outweigh gold (100 MPa) and copper (130 MPa) bulk counterparts.

Compared to previous micro/nanolattices, our gold and copper quasi-BCC nanolattices exhibit higher energy absorption capacity (up to 100±6 MJ m-3 and 110±10 MJ m-3 for gold and copper quasi-BCC nanolattices, respectively), surpassing most micro/nanolattices, while being 1-3 orders of magnitude larger than those of natural porous materials with comparable densities (Fig. 2)2-14.

In this study, we provide an in-depth exploration of mechanical gold and copper quasi-BCC nanolattices using experiments, theoretical calculation, and finite element analysis. Our work establishes that gold and copper quasi-BCC nanolattices have excellent compressive strength and energy absorption capacity, which substantially result from the synergy of the naturally high mechanical strength and plasticity of metals, the relevant size reduction-induced mechanical enhancement, and the quasi-BCC nanolattice architecture. We hope that this work provides some hints for the further design and fabrication of lightweight porous metals with high strength, energy absorption, electrical, and thermal conductivity, and thereby offering promising prospects for realizing high-performance multifunctional applications.
More details can be found in our paper "Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity" published in Nature Communications.
References
7. Schaedler T. A., et al. Ultralight metallic microlattices. Science 334, 962-965 (2011).
8. Zheng X., et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373-1377 (2014).
9. Zheng X., et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100-1106 (2016).
Follow the Topic
-
Nature Communications
An open access, multidisciplinary journal dedicated to publishing high-quality research in all areas of the biological, health, physical, chemical and Earth sciences.
Related Collections
With collections, you can get published faster and increase your visibility.
Applications of Artificial Intelligence in Cancer
Publishing Model: Open Access
Deadline: Mar 31, 2025
Biology of rare genetic disorders
Publishing Model: Open Access
Deadline: Apr 30, 2025
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in