Abstract
Antifoams are widely used to control or to avoid foam production. In order to work, antifoam particles need to break foam films efficiently, which many antifoams do very well. However, once they have broken a film, to continue to be effective they need to be transported to the next film. We show, for the first time, that buoyancy has an important part in the transport of the antifoam particles. In microgravity, where buoyancy and gravitational drainage are strongly slowed down, diffusion leads to poor antifoam performance. The foam is stable for the duration of the experiment, whereas on Earth the foam starts to disappear immediately. Indeed, microgravity renders highly efficient antifoam practically useless.
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in