Unsustainable fossil fuel energy usage and its environmental impacts are the most significant scientific challenges in the scientific community. Two-dimensional (2D) materials have received a lot of attention recently because of their great potential for application in addressing some of society’s most enduring issues with renewable energy. Transition metal-based nitrides, carbides, or carbonitrides, known as “MXenes”, are a relatively new and large family of 2D materials. Since the discovery of the first MXene, Ti3C2 in 2011 has become one of the fastest-expanding families of 2D materials with unique physiochemical features. MXene surface terminations with hydroxyl, oxygen, fluorine, etc., are invariably present in the so far reported materials, imparting hydrophilicity to their surfaces. The current finding of multi-transition metal-layered MXenes with controlled surface termination capacity opens the door to fabricating unique structures for producing renewable energy. MXene NMs-based flexible chemistry allows them to be tuned for energy-producing/storage, electromagnetic interference shielding, gas/biosensors, water distillation, nanocomposite reinforcement, lubrication, and photo/electro/chemical catalysis. This review will first discuss the advancement of MXenes synthesis methods, their properties/stability, and renewable energy applications. Secondly, we will highlight the constraints and challenges that impede the scientific community from synthesizing functional MXene with controlled composition and properties. We will further reveal the high-tech implementations for renewable energy storage applications along with future challenges and their solutions.
Recent Progress and New Horizons in Emerging Novel MXene-Based Materials for Energy Storage Applications for Current Environmental Remediation and Energy Crises
In the twenty-first century, advanced human society entirely relies on wearable and portable electronic devices, because they offer tremendous convenience and significantly convenient lifestyles.
Like
Be the first to like this
Follow the Topic
Sustainability
Research Communities > Community > Sustainability
Analytical Chemistry
Physical Sciences > Chemistry > Analytical Chemistry
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in