Abstract
Groundwater is a critical resource that supports agriculture and ecosystems which is increasingly threatened by anthropogenic activities and climate change. Despite the advancements in spatial analysis methods, there remains a lack of comprehensive reviews that synthesize these techniques specifically for groundwater vulnerability assessment as existing literature often focuses on isolated methodologies without integrating them into a cohesive framework that addresses the complexities of groundwater systems. Hence, the need for proactive conservation and mitigation strategies on how spatial analysis can enhance groundwater vulnerability assessments is crucial for developing effective policies and practices to safeguard this vital resource. This review evaluates various spatial analysis techniques used in assessing groundwater vulnerability, identifies their strengths and limitations, and proposes a strategic framework for their application in conservation efforts. A systematic literature review focused on peer-reviewed articles published in the last two decades. Techniques such as remote sensing (RS), Geographic Information Systems (GIS), Multi-Criteria Decision Analysis (MCDA), and statistical modelling were analyzed in terms of their applicability to groundwater vulnerability assessments. The findings reveal that spatial analysis techniques significantly enhance the accuracy of groundwater vulnerability assessments (GVAs) by incorporating diverse data sources such as land use, soil characteristics, and hydrological features. Key results indicate that GIS-based models provide robust frameworks for identifying vulnerable areas, while MCDA facilitates stakeholder engagement by integrating socio-economic factors into decision-making processes. The study concludes that a strategic approach combining various spatial analysis techniques offers a promising pathway for enhancing groundwater vulnerability assessments. This integrated methodology not only aids in identifying vulnerable areas but also supports informed decision-making processes regarding conservation efforts. However, future research should focus on developing standardized protocols for integrating diverse spatial analysis methods and longitudinal studies to assess the long-term effectiveness of implemented conservation strategies based on these assessments.
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in