Triple ionization of benzene trimers

We study triple ionization mechanisms in benzene trimer that are initiated by the creation of a deep-lying carbon 2s state or one outer-valence and one inner-valence vacancies at two separate molecules. The system can relax via ultrafast intermolecular decay processes, forming a tricationic trimer.
Published in Chemistry
Triple ionization of benzene trimers
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

High-order aromatic clusters are highly presented in macro-biomolecules. Investigations on their structures and dynamics are relevant to a wide variety of research fields ranging from the stability of proteins and DNA to drug binding and crystal engineering. Studying the properties of excited states in molecular complexes has recently attracted considerable interest due to the possibility for opening various ultrafast energy and charge transfer processes like the intermolecular Coulombic decay (ICD). For ICD in a molecular dimer, its de-excitation can cause ionization of the neighboring molecule, which leads to ejection of a low-energy electron and formation of two repulsive ions undergoing Coulomb explosion.

Here, by using benzene trimers as the basic building unit of higher-order aromatic clusters, we study the electron-collision (260 eV) induced ionization process and the subsequent reaction dynamics of triply-charged ions. Our studies through fragment ions coincident momentum spectroscopy, supported by strong-field laser (~6×1014 W/cm2, 40 fs) experiments and ab-initio molecular dynamics simulations in which we consider eight different conformational geometries of the neutral benzene trimer, provide the mechanistic details about the fragmentation dynamics of benzene trimers. We identified two ultrafast decay mechanisms in the triple ionization of benzene trimers. One is assigned to double sequential ionization plus ICD (dSI+ICD), where one outer-valence and one inner-valence vacancies are created separately at two molecules of the trimer and the following ICD process causes the ionization of the third benzene molecule. The other one is double ICD (dICD), which is initiated by electron-collision with the removal of a deep-lying carbon 2s (C2s) inner-valence electron. Afterward an electron from outer-valence shell of C6H6+ fills the C2s−1 vacancy, and the energy released ionizes the neighboring two molecules. The present study of ultrafast ionization processes in benzene trimers has proven a valuable tool for imaging the structure of molecular complexes.

Our work reveals a concerted fragmentation mechanism with a dominant symmetric triangular configuration for the three-body dissociation of benzene trimers, which can be a general phenomenon occurring in biological systems. You will find more details from the paper “Triple ionization and fragmentation of benzene trimers following ultrafast intermolecular Coulombic decay” at https://doi.org/10.1038/s41467-022-33032-2

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Chemistry
Physical Sciences > Chemistry

Related Collections

With collections, you can get published faster and increase your visibility.

Biology of rare genetic disorders

This cross-journal Collection between Nature Communications, Communications Biology, npj Genomic Medicine and Scientific Reports brings together research articles that provide new insights into the biology of rare genetic disorders, also known as Mendelian or monogenic disorders.

Publishing Model: Open Access

Deadline: Jan 31, 2025

Advances in catalytic hydrogen evolution

This collection encourages submissions related to hydrogen evolution catalysis, particularly where hydrogen gas is the primary product. This is a cross-journal partnership between the Energy Materials team at Nature Communications with Communications Chemistry, Communications Engineering, Communications Materials, and Scientific Reports. We seek studies covering a range of perspectives including materials design & development, catalytic performance, or underlying mechanistic understanding. Other works focused on potential applications and large-scale demonstration of hydrogen evolution are also welcome.

Publishing Model: Open Access

Deadline: Dec 31, 2024