Towards unravelling the mechanisms of “clever” plant roots designing resilient microbiomes

“Plants actively shape their associated microbial communities by synthesizing bio-active substances. Despite the univocal evidence of plant genotype effects on microbiome assemblage, and that a repertoire of plant exudates including secondary metabolites unique for each plant genotype drives microbial assemblage, little research attention is directed towards the mechanisms involved”.

Published in Microbiology

Towards unravelling the mechanisms of “clever” plant roots designing resilient microbiomes
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Explore the Research

BioMed Central
BioMed Central BioMed Central

Maize synthesized benzoxazinoids affect the host associated microbiome - Microbiome

Background Plants actively shape their associated microbial communities by synthesizing bio-active substances. Plant secondary metabolites are known for their signaling and plant defense functions, yet little is known about their overall effect on the plant microbiome. In this work, we studied the effects of benzoxazinoids (BXs), a group of secondary metabolites present in maize, on the host-associated microbial structure. Using BX knock-out mutants and their W22 parental lines, we employed 16S and ITS2 rRNA gene amplicon analysis to characterize the maize microbiome at early growth stages. Results Rhizo-box experiment showed that BXs affected microbial communities not only in roots and shoots, but also in the rhizosphere. Fungal richness in roots was more affected by BXs than root bacterial richness. Maize genotype (BX mutants and their parental lines) as well as plant age explained both fungal and bacterial community structure. Genotypic effect on microbial communities was stronger in roots than in rhizosphere. Diverse, but specific, microbial taxa were affected by BX in both roots and shoots, for instance, many plant pathogens were negatively correlated to BX content. In addition, a co-occurrence analysis of the root microbiome revealed that BXs affected specific groups of the microbiome. Conclusions This study provides insights into the role of BXs for microbial community assembly in the rhizosphere and in roots and shoots. Coupling the quantification of BX metabolites with bacterial and fungal communities, we were able to suggest a gatekeeper role of BX by showing its correlation with specific microbial taxa and thus providing insights into effects on specific fungal and bacterial taxa in maize roots and shoots. Root microbial co-occurrence networks revealed that BXs affect specific microbial clusters.

The above excerpt from our paper was the motivation behind this research work. The story began three years ago when we decided to conduct a quick study to explore the influence of plant defensive secondary metabolite, benzoxazinoids on the maize associated microbiomes. This idea was fostered by two researchers who had fallen in love with two extreme specialties of science; plant pathology and natural product chemistry and were supported by enthusiastic and energetic lab group members.

Fast forward, we had many discussions on the experimental design that will enable us to achieve our objective of profiling BXs effects on microbiomes at different stages of maize development. One key challenge that we had was the choice of growth system that will be appropriate for this study. Nevertheless, things worked out quite well when we settled on the rhizobox growth system. We setup the experiment in our open semi-field facility and thus the seedlings enjoyed the coruscating 2016 summer sunshine. Throughout the sample preparation and data analysis phases, we continuously discussed the progress of work! This was important for effective collaborative studies!

Data exploration stage came with new excitement as interesting results trickled in and we were enlivened with curiosity to probe the data into details. Overall, our work revealed the role of BXs as key modulators or “gatekeepers” during maize microbiome assemblage. This was further corroborated by network analysis, which showed that BXs affected specific microbial clusters of the microbiome. Moreover, we found that BXs negatively correlated with specific plant pathogens that are of great economic importance. We therefore suggest that the higher BX synthesis during the early development of maize and its effect on microbial communities might open new frontiers for maize breeding in the future.

Poster 1: Microbial network based on Spearman’s correlations in the roots of W22_1 and its mutant. OTUs are shown as nodes, and correlations as edges. Positive and negative correlations are shown with grey and red edges, respectively. Bacterial and fungal nodes are represented as square and circle symbols in the network, respectively. Indicator OTUs for bx1W22_1 and W22_1 are shown with a large and a medium node size while others are shown with small size to indicate the location of indicator species in overall network

 Reference:

Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome; 2019;1–17. 

https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0677-7

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Microbiology
Life Sciences > Biological Sciences > Microbiology
  • Microbiome Microbiome

    This journal hopes to integrate researchers with common scientific objectives across a broad cross-section of sub-disciplines within microbial ecology. It covers studies of microbiomes colonizing humans, animals, plants or the environment, both built and natural or manipulated, as in agriculture.

Related Collections

With collections, you can get published faster and increase your visibility.

JPL's Biotechnology and Planetary Protection Group: Special Collection

In this special series in Microbiome and Environmental Microbiome, we highlight articles that explore the microbiome of aeronautics and space studies conducted by the Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group. Characterizing aeronautics-associated microbiomes and microgravity compatible technologies for exploring the microbiomes of spacecraft, spacesuits and astronauts provides insights on the utilization of novel technologies and microbiota driving factors. The articles in this collection are also included in our Aeronautics and space microbiomes series.

Publishing Model: Open Access

Deadline: Ongoing