Guest Edited Collection on Coacervation in systems chemistry

Communications Chemistry is welcoming submissions to a Collection on Coacervation in systems chemistry
Published in Chemistry
Guest Edited Collection on Coacervation in systems chemistry
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Complex molecular systems, in which large numbers of molecules react and interact with one another to give rise to emergent properties and behaviours, are present in every aspect of the world around us. Nature provides spectacular examples of molecularly-fuelled motion, chemical communication, quorum sensing, adaptive materials, oscillating reactions, and self-replicating systems, among others. The aim of systems chemistry is to understand the emergence of these properties from complex reaction networks, and to incorporate these networks into synthetic materials.

In living systems, complex reaction networks are organized into dynamic compartments, which sets the stage for the potential of this approach. Coacervation is a versatile way to create compartments with distinct chemical properties, through liquid–liquid phase separation. The size of these compartments ranges from the nanoscale to the mesoscale. They could act as organelles in a synthetic cell, be used as building blocks for smart materials, as catalysts, or to deliver cargo. They may also have played a role as protocells during the emergence of cellular life. Coacervates can bring subsets of molecules together, modulate their activity, and direct their interactions, thereby altering chemical reactions and assemblies. In return, chemistry can control the coacervation process and tune the chemical properties of coacervates, forging an intimate bond between coacervation and systems chemistry.

This Guest Edited Collection aims to bring together research at the intersection of systems chemistry and coacervation. We welcome both experimental and theoretical studies, with topics of interest including but not limited to:

  • Artificial cells and phase separation in synthetic biology
  • Chemical origins of life
  • Active matter
  • Chemically active droplets
  • Methodologies to create, stabilize and characterize coacervates
  • Chemical reaction networks controlling the formation of coacervates
  • Coacervates controlling chemical reaction networks

In addition to primary research Articles, we also welcome Perspectives, Reviews, and Comments. All submissions will be subject to the same review process and editorial standards as regular Communications Chemistry Articles.

The team of Editors working on this Collection is:

Editorial Board Member: Prof Nathalie Katsonis, University of Groningen, Netherlands

Guest Editor: Dr Evan Spruijt, Radboud University, Netherlands

Guest Editor: Dr Lorraine Leon, University of Central Florida, USA

Guest Editor: Dr Guillermo Monreal Santiago, University of Strasbourg, France

Chief Editor: Dr Victoria Richards, Communications Chemistry, UK

Associate Editor: Dr Huijuan Guo, Communications Chemistry, Germany

See here for full details: https://nature.com/collections/coacervation-systems-chem

Image credit: Evan Spruijt

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Chemistry
Physical Sciences > Chemistry

Related Collections

With collections, you can get published faster and increase your visibility.

Mass spectrometry method development

Mass spectrometry is a cornerstone technique across various scientific disciplines, enabling precise analysis of complex samples, characterization of atom clusters and molecules, and elucidation of reaction mechanisms. This cross-journal Collection brings together advances in method development for mass spectrometry, including but not limited to advances in sample preparation, instrumentation, automation and integration, computational data analysis and prediction.

Publishing Model: Open Access

Deadline: Jan 31, 2025

Self-Assembled Soft Matter

In this cross-journal Collection, across Nature Communications, Communications Chemistry, Communications Materials and Scientific Reports, we focus on different forms of self-assembled soft matter, from fundamental studies to applied systems. This includes, for example, coacervation and liquid-liquid phase separation, chiral systems and polymer assemblies.

Publishing Model: Open Access

Deadline: Jan 31, 2025