
Imagine you are a singer performing on the scene in a big arena with tens of thousands of spectators. During a ballade, they all wave lighters in sync with your music. So, at a first glance when looking into the stadium, they all do the same. However, focusing on the front rows where you can identify the individuals, reveals differences. Some have no lighter at all, some have a small flame, some a large flame, and some have flickering flames. In other words, at the individual level they all behave differently. The same goes for nanoparticles in a catalyst, where some particles may be very active and some not. The reasons are their structure since they are slightly different at the atomic level, their interaction with the support, and their relation with neighboring particles due to, for example, local reactant conversion effects.
Therefore, researchers in the field of single particle catalysis are developing experimental methods to investigate catalyst nanoparticles “in action” one-by-one. In this quest, one of the main challenges is to measure single catalyst nanoparticle activities at conditions relevant for applications in terms of for example reactant concentration, and to ensure that other nanoparticles do not influence the one(s) under investigation. This is where our idea emerged to use nanofluidic structures decorated with single nanoparticles as a new paradigm for single particle catalysis. When localizing a single nanoparticle inside a fluidic structure, we can both isolate it, and thus prevent interaction with others, and confine the formed product in a volume so tiny that we drastically increase the possibility to detect it because it cannot get diluted or diffuse out of our field of view.

In this pilot study, we verified this hypotesis by simultaneously flowing reagents through parallel nanochannels decorated with single Au catalyst particles and monitoring them during reaction (Figure 1). We used the reaction of fluorescein with borohydride in which the fluorescence emission is “turned off”, enabling the use of fluorescence microscopy to measure catalyst activity. Using this platform, we measured the turnover frequency for 32 single Au nanoparticles simultaneously over a wide range of reaction conditions, and monitor in operando how it varied from the mass transport limited to the surface reaction limited regime, by changing the fluorescein concentration in the reactant mixture flushed through the nanochannels (Figure 2). We observed that the turnover frequency for single particles of different size is almost identical in the mass transport limited regime, while it varied widely and became particle-specific in the surface reaction limited regime even for particles of identical size. This is in line with the single-particle specific structure dictating the reaction rate and an example of the particle-to-particle heterogeneity often seen in nanoparticle catalysis. Consequently, generating rigorous and conclusive understanding of the main causes of this heterogeneity, and its impact on activity, remains an important question in the field. Our nanofluidic device is thus a contribution to the experimental toolbox for single particle catalysis, where it enables investigations of single catalyst particle heterogeneity at relevant reaction conditions.

For further details, the full article can be found at: https://www.nature.com/articles/s41467-019-12458-1
Follow the Topic
-
Nature Communications
An open access, multidisciplinary journal dedicated to publishing high-quality research in all areas of the biological, health, physical, chemical and Earth sciences.
Related Collections
With collections, you can get published faster and increase your visibility.
Applications of Artificial Intelligence in Cancer
Publishing Model: Open Access
Deadline: Jun 30, 2025
Smart Materials for Bioengineering and Biomedicine
Publishing Model: Open Access
Deadline: Jun 30, 2025
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in