Bio- and Phytoremediation: A Symbiotic Solution for Heavy Metal-Polluted Soils

Heavy metal pollution is one of the most persistent and toxic environmental challenges of the 21st century. Industrial, mining, and agricultural activities have left a lasting impact on soils, threatening human health, ecosystems, and agricultural productivity.
Bio- and Phytoremediation: A Symbiotic Solution for Heavy Metal-Polluted Soils
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Explore the Research

SpringerLink
SpringerLink SpringerLink

Bio- and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils - Discover Applied Sciences

Bio- and phytoremediation, being encouraging terms implying the use of biological systems for cleansing purposes, have risen a worthy venture toward environmental restoration in discouraging scenarios, such as the augmentation of indestructible heavy metals. Hyperaccumulating plants and heavy metal resistant microbes own mechanisms embedded in their metabolism, proteins, and genes that confer them with “super characteristics” allowing them to assimilate heavy metals in order to amend polluted soils, and when combined in a symbiotic system, these super features could complement each other and be enhanced to overpower the exposure to toxic environments. Though xenobiotic pollution has been an object of concern for decades and physicochemical procedures are commonly carried out to offset this purpose, a “live” remediation is rather chosen and looked upon for promising results. A variety of benefits have been registered from symbiotic relationships, including plants teaming up with microbes to cope down with non-biodegradable elements such as heavy metals; but a carefully maneuvered interaction might signify a greater insight toward the application of bioremediation systems. These manipulations could consist of genetic engineering and/or additional supplementation of molecules and microbes. In the present study, a contemporary connection between plants and microbes involving their controlled management is summarized in a visionary display.

Did you know that certain plants and microorganisms have natural superpowers to clean up soils polluted with heavy metals like lead, cadmium, or mercury? This review explores the fascinating world of bio- and phytoremediation, where hyperaccumulating plants and metal-resistant microbes join forces to detoxify contaminated environments. From rhizoremediation to genetic engineering and microbial teamwork, discover the future of sustainable, living clean-up technologies.

In the face of growing heavy metal contamination in soils due to industrial and agricultural activities, sustainable solutions are urgently needed. This review, published in SN Applied Sciences, presents a comprehensive overview of bio- and phytoremediation—eco-friendly strategies that harness the natural abilities of hyperaccumulating plants and metal-resistant microorganisms to remediate polluted environments.

The article explores the physiological and molecular mechanisms employed by these organisms, including biosorption, phytostabilization, bioaccumulation, and chelation. Special attention is given to Plant Growth-Promoting Microorganisms (PGPMs) such as Pseudomonas fluorescens, Bacillus subtilis, and Rhizobium spp., which play a critical role in enhancing plant tolerance and metal uptake efficiency.

The review also highlights the potential of native Mexican plants like Ricinus communis (castor bean), Helianthus annuus (sunflower), and Prosopis laevigata (mesquite), recognized for their high biomass and tolerance to heavy metals such as cadmium, lead, and zinc. On the microbial side, key species such as Cupriavidus metallidurans and Pseudomonas putida exhibit genetic adaptations for metal detoxification, making them prime candidates for rhizoremediation systems.

Finally, the study envisions next-generation remediation approaches incorporating genetic engineering, nanotechnology, and biochar amendments, paving the way for more efficient, targeted, and sustainable bioremediation technoly.

Read the full article here: https://doi.org/10.1007/s42452-021-04911-y

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Bioremediation
Life Sciences > Biological Sciences > Biotechnology > Industrial Microbiology > Bioremediation
Agricultural Biotechnology
Life Sciences > Biological Sciences > Agriculture > Agricultural Biotechnology
Biotechnology
Life Sciences > Biological Sciences > Biotechnology
Microbial Ecology
Life Sciences > Biological Sciences > Ecology > Microbial Ecology

Related Collections

With collections, you can get published faster and increase your visibility.

Engineering: Energy Management System

Power system energy management is performed at different levels with different aims. The most important goals of optimal energy management of the power systems are cost reduction, reduce emissions, improve reliability and power quality indexes, increase profitability, etc. Innovative methods can be used to provide an energy management plan, or energy management can be defined as an optimization problem and optimization algorithms can be used to solve it. Uncertainties are also very important issues in power system operation programs, especially in the lower levels of the power system (microgrids). The electric vehicle parking lots or aggregators can also be used in the microgrids to store energy, in which case the issue of energy management takes on a new face. Therefore, to provide a good energy management program for the power system, one must have a detailed knowledge of its components and the technical constraints of the power system. Therefore, to provide a good energy management program, a comprehensive model of the power system with detailed data should be provided.

Publishing Model: Open Access

Deadline: Jun 30, 2025

Engineering: Technological Advancement in Wireless Sensor Networks and Its Scope in Industry 4.0 IoT

This Topical Collection is dedicated to highlighting the cutting-edge methods and latest research in the field of smart sensing, primarily in terms of exploring the latest machine learning analytics to extract information from the consequent sensory data, and investigating potential risk and countermeasures to ensure the security and privacy of sensing devices in WSN based Internet of Things/ Industrial Internet of things (IoT/IIoT). It allows researchers in WSN and IoT community to demonstrate their new ideas which may potentially reshape the future of IoT/IIoT. While sensing data have been traditionally processed within a powerful remote cloud server, the recent emergence of edge computing with these communication technologies makes it feasible to perform AI processing at the edges. Edge processing is aimed at overcoming the slower and more expensive method of sending the data to the cloud. The benefits of the parallel development of cloud-edge technologies in wireless sensor networks and communications are manifold. The progress in the development of these technologies has opened several new opportunities in multi-domain applications, such as smart cities, transportation, intelligent manufacturing, and e-Health.

Publishing Model: Open Access

Deadline: Sep 30, 2025