Biological wastewater treatment: a comprehensive sustainability analysis using life cycle assessment

This paper analyzes the environmental impacts of different wastewater treatment methods using life cycle assessment approach.
Biological wastewater treatment: a comprehensive sustainability analysis using life cycle assessment
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Explore the Research

SpringerLink
SpringerLink SpringerLink

Biological wastewater treatment: a comprehensive sustainability analysis using life cycle assessment - Environmental Monitoring and Assessment

The research conducts a life cycle assessment (LCA) on wastewater treatment (WWT) methods—membrane bioreactor (MBR), soil biotechnology (SBT), and bio-electrochemical constructed wetlands (BCW)—in comparison with the conventional activated sludge process (ASP). Employing SimaPro v9.5 with a cradle-to-gate system boundary, the analysis utilizes the IMPACT 2002 + method, employing per cubic meter of treated wastewater as the functional unit. The analysis shows that SBT exhibits the lowest environmental impacts among the considered WWT methods. The global warming potential was 0.0996 kg CO2 eq. for SBT, 1.33 kg CO2 eq. for MBR, 0.131 kg CO2 eq. for BCW, and 0.544 kg CO2 eq. for ASP. BCW demonstrates a 75.91% decrease, while MBR exhibits a 144.48% increase compared to ASP. Notably, electricity consumption emerges as the primary contributor to environmental impact in MBR and ASP. The resource impact category varies with a 138.15% increase in MBR and an 83.41% decrease in SBT compared to ASP. Additionally, the research indicates that the high human health impact observed in MBR results mainly from increased carcinogens (0.00176 kg C2H3Cl eq.), non-carcinogens (0.01 kg C2H3Cl eq.), and ionizing radiation (3.34 Bq C-14 eq.). The findings underscore the importance of considering treatment efficiency and broader environmental implications in selecting WWT methods. As the world emphasizes sustainability, such LCA studies provide valuable insights for making informed decisions in wastewater management.

The research conducts a life cycle assessment (LCA) on wastewater treatment (WWT) methods— membrane bioreactor (MBR), soil biotechnology (SBT), and bio-electrochemical constructed wetlands (BCW)—in comparison with the conventional activated sludge process (ASP). Employing SimaPro v9.5 with a cradle-to-gate system boundary, the analysis utilizes the IMPACT 2002 + method, employing per cubic meter of treated wastewater as the functional unit. The analysis shows that SBT exhibits the lowest environmental impacts among the considered WWT methods. The global warming potential was 0.0996 kg CO2 eq. for SBT, 1.33 kg CO2 eq. for MBR, 0.131 kg CO2 eq. for BCW, and 0.544 kg CO2 eq. for ASP. BCW demonstrates a 75.91% decrease, while MBR exhibits a 144.48% increase compared to ASP. Notably, electricity consumption emerges as the primary contributor to environmental impact in MBR and ASP. The resource impact category varies with a 138.15% increase in MBR and an 83.41% decrease in SBT compared to ASP. Additionally, the research indicates that the high human health impact observed in MBR results mainly from increased carcinogens (0.00176 kg C2H3Cl eq.), non carcinogens (0.01 kg C2H3Cl eq.), and ionizing radiation (3.34 Bq C-14 eq.). The findings underscore the importance of considering treatment efficiency and broader environmental implications in selecting WWT methods. As the world emphasizes sustainability, such LCA studies provide valuable insights for making informed decisions in wastewater management.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in