Global change affects soil carbon storage in Blue Carbon ecosystems

The future of seagrass, mangrove, and salt marsh ecosystems and the vast, ancient organic carbon deposits buried beneath them is threatened by disturbances that impact decomposition.
Published in Ecology & Evolution
Global change affects soil carbon storage in Blue Carbon ecosystems
Like

Salt marsh, mangrove, and seagrass ecosystems are colloquially termed ‘blue carbon’ ecosystems because of their effectiveness at storing organic carbon in their soils. The productive tidal wetland and seagrass plants that make up blue carbon ecosystems turn carbon dioxide (CO2) from the atmosphere into new biomass and trap sediment and organic particles washed in by tides. Some fraction of the organic carbon becomes buried in soils and can remain there for minutes to thousands of years. The length of time that organic carbon persists in soils reflects the many variables – oxygen levels, mineral composition, pore water chemistry, etc. – that affect whether microbes can access and decompose buried carbon. 

Temperate salt marshes.
Healthy salt marshes have lush stands of grasses (left). Storms can expose peat deposits that have been buried for thousands of years (right). The fate of this soil carbon is unknown, but some fraction is likely respired by microbes and returned to the atmosphere as carbon dioxide. Photos: A. C. Spivak

Long-term preservation of soil carbon is important for removing CO2 from the atmosphere and ensuring future sustainability of blue carbon ecosystems. These ecosystems are unique in their ability to bioengineer their elevation within the tidal frame. Rising sea levels trigger shifts in plant community composition and productivity with the net result that blue carbon ecosystems gain vertical elevation at a rate that, on average, has matched changes in sea level. Whether or not blue carbon ecosystems continue to keep pace with accelerated sea-level rise depends in a large part on the fate of the soil carbon. Understanding controls on decomposition is therefore important for improving both global carbon budgets and managing blue carbon ecosystems. 

Despite decades of research, we still lack a full understanding of the factors controlling soil organic carbon accumulation and loss. Accumulation is often attributed to the molecular complexity of structural plant compounds (e.g., lignin) and low soil oxygen levels that slow decomposition. Yet, there is enormous variability in soil carbon stocks and decay rates across blue carbon ecosystems that is not directly correlated to plant lignin production rates. 

Mangrove forests.
(Left) A healthy forest in New Caledonia. Photo: K. W. Krauss. (Right) Trees in Angola were buried by dredged mud and died. Photo: E. Wolanski.

Over lunch during a recent Coastal and Estuarine Research Federation meeting, we discussed potential mechanisms contributing to spatial heterogeneity in soil carbon stocks and challenges in developing future predictions, particularly under a rapidly changing climate and along developed coastlines. How will the importance of blue carbon storage change at a global scale in the future? What is the potential role of these ecosystems in affecting atmospheric CO2 concentrations? What will be the fate of ancient carbon eroded from wetlands and seagrass beds? What kinds of management and restoration practices will promote carbon storage and ecosystem sustainability?

Seagrass beds.
A healthy Thalassia bed near the Bahamas (left) and one where erosion is exposing belowground roots and removing buried organic matter (right). Photos: M. Long

Over the next year and a half we combed the coastal, marine, and terrestrial literature and discussed the key mechanisms affecting microbial access to buried carbon and how their effectiveness may change over spatial and temporal scales and between ecosystem types. We considered how global change and anthropogenic disturbances would affect the fate of recently-deposited and ancient soil carbon. Synthesizing this information in a way that could lead to new mechanistic understanding and more refined predictive models was more challenging than we imagined. We decided that a conceptual framework, such as provided in this article, would be useful for evaluating how the relative importance of different decomposition mechanisms vary within and between ecosystems and in response to disturbances. This conceptual framework forms the basis of our manuscript, and we hope that our paper will provide a platform from which blue carbon researchers can build an integrated understanding of the role coastal wetlands will play in future carbon storage.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Go to the profile of Faming Wang
almost 5 years ago

Nice Job, Amanda. We have an accepted paper may help to answer some part of your questions listed above.

Follow the Topic

Ecology
Life Sciences > Biological Sciences > Ecology

Related Collections

With collections, you can get published faster and increase your visibility.

Progress towards the Sustainable Development Goals

The year 2023 marks the mid-point of the 15-year period envisaged to achieve the Sustainable Development Goals, targets for global development adopted in September 2015 by all United Nations Member States.

Publishing Model: Hybrid

Deadline: Ongoing

Wind, water and dust on Mars

In this Collection, we bring together recent work, and invite further contributions, on the nature and characteristics of the Martian surface, the processes at play, and the environmental conditions both in the present-day and in the distant past.

Publishing Model: Hybrid

Deadline: Ongoing