Tackling COVID-19 with materials science

Materials science (imaging, microfluidics, antiviral drugs, vaccines, personal protective equipment, organoids, organs-on-a-chip, medical equipment, etc.) contributes to SARS-CoV-2 research and provides tools for the understanding, protection, detection, and treatment of future viral diseases.
Tackling COVID-19 with materials science
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

In our recent Nature Reviews Materials featured cover paper (A materials-science perspective on tackling COVID-19. Nat Rev Mater 5, 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y), we discussed the ongoing SARS-CoV-2 pandemic that highlights the importance of materials science in providing tools and technologies for antiviral research and treatment development. In this Review, we discuss previous efforts in materials science in developing imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission, as well as material platforms for the detection of viruses and the delivery of antiviral drugs and vaccines. We highlight the contribution of materials science to the manufacturing of personal protective equipment and to the design of simple, accurate and low-cost virus-detection devices. We then investigate future possibilities of materials science in antiviral research and treatment development, examining the role of materials in antiviral-drug design, including the importance of synthetic material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment. Materials-science-based technologies not only contribute to the ongoing SARS-CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.

Fig. 1: SARS-CoV-2 and materials science.

Fig. 1: SARS-CoV-2 and materials science. Top| The structure, transmission routes and replication cycles of SARS-CoV-2. Bottom| Materials science contributes to the development and optimization of protective equipment and provides technologies and tools for the analysis of SARS-CoV-2, for example, high-resolution imaging, for sequencing (PCR) and protein analysis (immunoassays), for viral detection, for vaccine and treatment development and delivery, as well as by contributing advanced materials for clinical instruments, for example, filters for extracorporeal membrane oxygenation (ECMO) machines. SNP, single nucleotide polymorphism.
Fig. 2: Materials science in viral research and protection.  a | Single-virus tracking workflow using fluorescence microscopy. The representative image shows an influenza virus in Chinese hamster ovary cells (z-stacked time-lapse images, the colour code from pink/blue to yellow/white indicates the timescale from 0 s to 500 s). b | There are three possible imaging geometries in single-virus tracking, that is, epifluorescence geometry (Epi), confocal microscopy and total internal reflection fluorescence (TIRF) geometry. 
Fig. 2: Materials science in viral research and protection. a | Single-virus tracking workflow using fluorescence microscopy. The representative image shows an influenza virus in Chinese hamster ovary cells (z-stacked time-lapse images, the colour code from pink/blue to yellow/white indicates the timescale from 0 s to 500 s). b | There are three possible imaging geometries in single-virus tracking, that is, epifluorescence geometry (Epi), confocal microscopy and total internal reflection fluorescence (TIRF) geometry.  Panel a adapted with permission from ref.12, PNAS. Panels a and b reprinted from ref.11, Springer Nature Limited.
Fig. 2: Materials science in viral research and protection.
Fig. 2: Materials science in viral research and protection. c | Nanopore sequencing using a nanosize pore and sensing regions in Mycobacterium smegmatis porin A (MspA) and α-haemolysin. d | A self-powered air filter can capture particulate matter and nanoparticles by surface adhesion. Arg, argon ion; BS, beam splitter; CCD, charge-coupled device; DM, dichroic mirror; F, filter; M, mirror; Nd:YAG, neodymium-doped yttrium aluminium garnet; S, shutters; SL, optical slits to control image size.  Panel c reprinted from ref.13, Springer Nature Limited. Panel d reprinted from ref.34CC BY 4.0.
Fig. 3: Materials science in virus detection.
Fig. 3: Materials science in virus detection. a | Multiplexed Zika virus/dengue virus (ZIKV/DENV) antigen microarray combining nanostructured plasmonic gold and near-infrared fluorescence molecules. Antibodies against ZIKV and DENV antigens in human serum are first captured by the microarray and then labelled with anti-human immunoglobulin G-infrared fluorescent dye 680 (IgG-IRDye680) and immunoglobulin A-infrared fluorescent dye 800 (IgA-IRDye800). Binding between IgG and IgA with antigens is evaluated by measuring the fluorescence intensities of the two dyes. Panel a reprinted from ref.7, Springer Nature Limited.
Fig. 3: Materials science in virus detection.
Fig. 3: Materials science in virus detection. b | Nanowire-based detection of single viruses. Binding of the virus to a specific antibody (Ab) leads to a change in conductance. Panel b reprinted with permission from ref.38, PNAS.
Fig. 3: Materials science in virus detection. c | An external electrical pulse and biosensors based on graphene quantum dots (GQDs) and gold-embedded polyaniline nanowires (AuNP-PAni) can be used for the detection of hepatitis E virus (HEV). The biosensor electrode, which is based on anti-HEV Ab-conjugated to nitrogen and sulfur codoped graphene quantum dots and gold-embedded polyaniline nanowires (Ab-N,S-GQDs@AuNP-PAni), can capture HEV. The HEV concentration is determined from the pulse-induced impedimetric response. 
Fig. 3: Materials science in virus detection. c | An external electrical pulse and biosensors based on graphene quantum dots (GQDs) and gold-embedded polyaniline nanowires (AuNP-PAni) can be used for the detection of hepatitis E virus (HEV). The biosensor electrode, which is based on anti-HEV Ab-conjugated to nitrogen and sulfur codoped graphene quantum dots and gold-embedded polyaniline nanowires (Ab-N,S-GQDs@AuNP-PAni), can capture HEV. The HEV concentration is determined from the pulse-induced impedimetric response. Panel c reprinted from ref.39CC BY 4.0.
Fig. 3: Materials science in virus detection.
Fig. 3: Materials science in virus detection. d | A single-molecule whispering gallery mode biosensor platform using plasmonic gold nanorods can be used to detect single nucleic acid molecules. EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; GCE, glass carbon electrode; NHS, N-hydroxysuccinimide; N,S-GQDs, nitrogen and sulfur codoped graphene quantum dots; PBS, polarizing beam splitter; PD, photodetector; PDMS, polydimethylsiloxane. Panel d reprinted from ref.47, Springer Nature Limited.
Fig. 4: Materials science in the treatment and vaccination of viral diseases.
Fig. 4: Materials science in the treatment and vaccination of viral diseases. a | Gold nanoparticles (AuNPs) coated with long and flexible moieties of undecanesulfonic acid (MUS) show viricidal activity against heparan sulfate proteoglycan (HSPG)-binding viruses, owing to the generation of high forces (~190 pN), which irreversibly deform the virus; by contrast, 3-mercaptoethylsulfonate (MES)-coated AuNPs are not antiviral because of the short molecule length. Panel a reprinted from ref.60, Springer Nature Limited.
Fig. 4: Materials science in the treatment and vaccination of viral diseases. b | Nasal delivery of inactivated H1N1 influenza virus and pulmonary surfactant guanosine monophosphate–adenosine monophosphate (PS-GAMP; an activator of stimulator of interferon genes (STING)) leads to the stimulation of dendritic cell (DC) maturation, antibody generation and, subsequently, to a CD8+ T cell and tissue-resident memory T (TRM) cell response, generating broad protection against seasonal influenza B virus (IBV), H3N2, H5N1 and H7N9 influenza viruses. 
Fig. 4: Materials science in the treatment and vaccination of viral diseases. b | Nasal delivery of inactivated H1N1 influenza virus and pulmonary surfactant guanosine monophosphate–adenosine monophosphate (PS-GAMP; an activator of stimulator of interferon genes (STING)) leads to the stimulation of dendritic cell (DC) maturation, antibody generation and, subsequently, to a CD8+ T cell and tissue-resident memory T (TRM) cell response, generating broad protection against seasonal influenza B virus (IBV), H3N2, H5N1 and H7N9 influenza viruses. Panel b from ref.84, Herold, S. & Sander, L.-E. Toward a universal flu vaccine. Science 367, 852–853 (2020). Redrawn with permission from AAAS.
Fig. 4: Materials science in the treatment and vaccination of viral diseases. c | Lipid nanoparticles can be used for the delivery of a Zika virus pre-membrane and envelope (ZIKV prM-E)-encoding mRNA vaccine against the Zika virus. Delivering a ZIKV prM-E fusion loop mutant-encoding mRNA diminishes the generation of cross-reactive antibodies that promote Dengue virus infection. 
Fig. 4: Materials science in the treatment and vaccination of viral diseases. c | Lipid nanoparticles can be used for the delivery of a Zika virus pre-membrane and envelope (ZIKV prM-E)-encoding mRNA vaccine against the Zika virus. Delivering a ZIKV prM-E fusion loop mutant-encoding mRNA diminishes the generation of cross-reactive antibodies that promote Dengue virus infection. Panel c reprinted with permission from ref.89, Elsevier.
Fig. 4: Materials science in the treatment and vaccination of viral diseases.
Fig. 4: Materials science in the treatment and vaccination of viral diseases. d | During extracorporeal membrane oxygenation, venous blood is drained from the body, oxygenated by fresh gas (the blender modulates the ratio between air and oxygen) using a gas-exchange device and then returned to the body. AEC, alveolar epithelial cell. Panel d from ref.95N. Engl. J. Med. Brodie, D. & Bacchetta, M. Extracorporeal membrane oxygenation for ARDS in adults. 365, 1905–1914. Copyright © (2011) Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.
Fig. 5: Timeline of key contributions of materials science to virology.
Fig. 5: Timeline of key contributions of materials science to virology.

Related reading:https://orcid.org/0000-0001-7114-1095  

https://www.nature.com/articles/s41467-021-25075-8

https://www.nature.com/articles/s41467-021-24961-5

https://www.nature.com/articles/s41467-021-21436-5  

https://www.nature.com/articles/s41578-020-00247-y 

https://www.nature.com/articles/s41467-019-12462-5

https://bioengineeringcommunity.nature.com/posts/tackling-covid-19-with-materials-science  https://bioengineeringcommunity.nature.com/posts/micropatterned-microfluidics-dendronized-fluorosurfactants-for-highly-stable-emulsions https://bioengineeringcommunity.nature.com/posts/nature-derived-2-dimensional-materials-for-cancer-therapy-and-sustainable-solutions https://bioengineeringcommunity.nature.com/posts/multi-targeted-reactive-oxygen-species-burst-for-cancer-therapy

https://bioengineeringcommunity.nature.com/posts/aladdin-magic-mat-non-printed-integrated-circuit-textile-for-wireless-theranostics

Related Cancer Theranostics works:

  1. D Gao, T Chen, Y Han, S Chen, Y Wang, X Guo, H Wang, X Chen, M Guo, Y Zhang, G Hong, X Zhang*, Z Tian*, Z Yang*. Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-independent Synergistic Photothermal-thermodynamic Therapy. Nano-Micro Letters, 2021,13, 99. (Featured Cover Paper)
  2. Y Yang, X Wei, N Zhang*, J Zheng, Q Wen, X Luo, C Lee, X Liu, X Zhang*, J Chen, C Tao, W Zhang*, X Fan*. A non-printed integrated-circuit textile for wireless theranostics. Nature Communications. 2021, 12, 4876.
  3. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong,* X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 1124.
  4. N Kong, H Zhang, C Feng, C Liu, Y Xiao, X Zhang, L Mei, J S Kim, W Tao, X Ji. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications. 2021, 12, 4777.
  5. Z Tang†, N Kong†, X. Zhang†, Y Liu, P Hu, S Mou, P Liljeström, J Shi, W Tan, J S Kim, Y Cao, R Langer,  K W. Leong, O C. Farokhzad, W Tao. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860. (Featured Cover Paper, highly cited paper, accessed>20,000 times) 
  6. Y Wang, D Gao, Y Liu, X Guo, S Chen, L Zeng, J Ma, X Zhang*, Z Tian*, Z Yang*. Immunogenic-Cell-Killing and Immunosuppression-Inhibiting Nanomedicine. Bioactive Materials, 2020, 6 (6), 1513-1527.
  7. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Progress in Materials Science, 2021, 118, 100768.
  8. Z Yang, D Gao, X Guo, L Jin, J Zhang, Y Wang, S Chen, X Zheng, L Zeng, M Guo, X Zhang*, Z Tian*. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged ACS Nano, 2020, 14, 12, 17442-17457.
  9. D Wei, Y Yu, Y Huang,1 Y Jiang, Y Zhao, Z Nie, F Wang, W Ma, Z Yu, Y Huang, X Zhang, Z Liu, X Zhang, H Xiao. A Near-Infrared-II Polymer with Tandem Fluophores Demonstrates Superior Biodegradability for Simultaneous Drug Tracking and Treatment Efficacy Feedback. ACS Nano, 2021, 15 (3), 5428–5438.
  10. D Wei, Y Yu, X Zhang, Y Wang, H Chen, Y Zhao, F Wang, G Rong, W Wang, X Kang, J Cai, Z Wang, J Yin, M Hanif, Y Sun, G Zha, L Li, G Nie, H Xiao*. Breaking down the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano, 2020, 14, 12, 16984-16996.
  11. Z Lei, W Zhu, X Zhang, X Wang, P Wu. Bio-inspired ionic skin for theranostics hydrogel. Advanced Functional Materials, 2020, 2008020.
  12. D Gao, X Guo, X Zhang*, S Chen, Y Wang, T Chen, G Huang, Y Gao, Z Tian*, Z Yang*. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio. 2019, 5,100035. (Invited Paper, ESI highly cited paper, open access with a fee waiver, 99.983% excellence, 2nd most highly cited paper of Materials Today Bio)
  13. J Ouyang†, X Ji†, X Zhang†, C Feng, Z Tang, N Kong, A Xie, J Wang, X Sui, L Deng, Y Liu, J S Kim, Y Cao, W Tao*. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020, 117 (46), 28667-28677. (highly cited paper, Highlighted by: MRS Bulletin Materials News)
  14. G Parekh, Y Shi, J Zheng, X Zhang*, S Leporatti. Nano-carriers for targeted delivery and biomedical imaging enhancement. Therapeutic Delivery, 2018, 9(6), 451-468.
  15.  C Liu, S Sun, Q Feng, Y Wu, N Kong, Z Yu, J Yao, X Zhang, W Chen, Z Tang,  Y Xiao, X Huang, A Lv, Y Cao, A Wu, T Xie, W Tao. Arsenene nanodot: a new-concept arsenical drug with selective killing effects for solid tumor therapy. Advanced Materials, 2021, 2102054
  16. W Y Kim, M Won, S Koo, X Zhang, J S Kim. Mitochondrial H2Sn-Mediated Anti-Inflammatory Theranostics. Nano-Micro Letters,  2021, 13, 168.

Other Related Nature-derived/inspired materials/tea works:

  1.  C Liu, S Sun, Q Feng, Y Wu, N Kong, Z Yu, J Yao, X Zhang, W Chen, Z Tang,  Y Xiao, X Huang, A Lv, Y Cao, A Wu, T Xie, W Tao. Arsenene nanodot: a new-concept arsenical drug with selective killing effects for solid tumor therapy. Advanced Materials. 2021, 2102054
  2. Y Xie, J Yin, J Zheng, L Wang, J Wu, M Dresselhaus, X Zhang*. Synergistic cobalt sulfide/eggshell membrane carbon ACS Applied Materials & Interfaces. 2019, 11 (35), 32244-32250.
  3. N Kong, H Zhang, C Feng, C Liu, Y Xiao, X Zhang, L Mei, J S Kim, W Tao, X Ji. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications. 2021, 12, 4777.
  4. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021,12,1124.
  5. Z Li, D Chu, Y Gao, L Jin*, X Zhang*, W Cui, J Li*. Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite Materials Today Advances. 2019,3,100014. (Invited open-access paper among most highly cited paper of Materials Today Advances)
  6. Z Lei, W Zhu, X Zhang, X Wang, P Wu. Bio-inspired ionic skin for theranostics hydrogel. Advanced Functional Materials, 2020, 2008020.
  7. L Jin, J Li, L Liu*, Z Wang*, X Zhang*. Facile synthesis of carbon dots with superior sensing. Applied Nanoscience, 2018, 755(3), 1-8.
  8. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Progress in Materials Science, 2021, 118, 100768.
  9. Z Yang, D Gao, X Guo, L Jin, J Zhang, Y Wang, S Chen, X Zheng, L Zeng, M Guo, X Zhang*, Z Tian*. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged ACS Nano, 2020, 14, 12, 17442-17457.
  10. Y Wang, L Lu, G Zheng*, X Zhang*. Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano, 2020, 14(8), 9861-9872. (Featured Cover Paper)
  11. Z Li†, X Zhang†, Z Guo, L Shi, L Jin, L Zhu, X Cai, J Zhang, Y Liu, Y Zhang, J Li. Nature-Derived Bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Materials Today Advances, 2021, 11, 100150.  
  12. X Chen, Y Chen, L Zou, X Zhang, Y Dong, J Tang, D McClements, W Liu. Plant-based Nanoparticles Consisting of a Protein Core and Multilayer Phospholipid Shell: Fabrication, Stability, and  Journal of Agricultural and Food Chemistry, 2019, 67 (23), 6574-6584.
  13. P Tang, D Shen, Y Xu, X Zhang*, J Shi, J Yin*. Effect of fermentation conditions and the tenderness of tea leaves on the chemical components and sensory quality of fermented juice. Journal of Chemistry, 2018, 4312875,1-7.
  14. X Zhang*. Tea and cancer prevention. Journal of Cancer Research Updates, 2015, 4 (2), 65-73.
  15. Q Zhang, W Li, K Li, H Nan, C Shi, Y Zhang, Z Dai, Y Lin, X Yang, Y Tong, D Zhang, C Lu, L Feng, C Wang, X Liu, J Huang, W Jiang, X Wang, X Zhang, Eichler, Z. Liu, L. Gao. The Chromosome-Level Reference Genome of Tea Tree Unveils Recent Bursts of Non-autonomous LTR Retrotransposons in Driving Genome Size Evolution. Molecular plant 2020,13 (7), 935-938.
  16. Y Yang†, P Jin†, X Zhang†, N Ravichandran, H Ying, C Yu, H Ying, Y Xu, J Yin, K Wang, M Wu, Q New epigallocatechin gallate (EGCG) nanocomplexes co-assembled with 3-mercapto-1-hexanol and ß- lactoglobulin for improvement of antitumor activity. Journal of Biomedical Nanotechnology, 2017,13 (7), 805-814.
  17. X Zhang*, G Parekh, B Guo, X Huang, Y Dong, W Han, X Chen, G Polyphenol and Self-Assembly: Metal Polyphenol Nanonetwork for Drug Delivery and Biomedical Applications. Future Drug Discovery, 2019, 1 (1), FDD7. (Invited open-access paper with a fee waiver, most cited paper of the journal)

Related 2-dimentional/carbon materials works:

  1. Y Zheng, H Wei, P Liang, X Xu, X Zhang, H Li, C Zhang, C Hu, X Zhang, B Lei, W Wong, Y Liu, J Zhuang. Near-infrared-excited multicolor afterglow in carbon dots-based room-temperature phosphorescent materials. Angewandte Chemie, 2021, 202108696.  
  2. G Li, C Liu, X Zhang, P Luo, G Lin, W Jiang. Highly photoluminescent carbon dots-based immunosensors for ultrasensitive detection of aflatoxin M1 residues in milk. Food Chemistry. 2021, 355, 129443.
  3. L Jin, X Guo, D Gao, G Tan, N Du, X Wang, Y Zhang, Z Yang*, X Zhang*. NIR-responsive MXene nanobelts for wound NPG Asia Materials. 2021,13, 24. Selected for the “Special Issue on Biomaterials and Health-care related Materials”.
  4. J Meng, J Li, J Liu, X Zhang*, G Jiang*, L Ma, Z Hu, S Xi, Y Zhao, M Yan, P Wang, X Liu, Q Li, J Liu, T Wu, L Mai*. Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from  Doped ZnO  Solid ACS Central Science, 2020, 6(8), 1431–1440.
  5. J Cui, J Yin, J Zheng, J Meng, M Liao, T Wu, S He, S Wei, Z Xie, H Wang, M Dresselhaus, Y Xie*, J Wu*,  C Lu*, X Zhang*. Supermolecule cucurbituril subnanoporous carbon supercapacitor(SCSCS). Nano Letters, 2021, 21 (5), 2156–2164.
  6. J Meng, Z Liu, X Liu, W Yang, L Wang, Y Li, Y Cao, X Zhang*, L Mai*. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen Journal of Materials Science & Technology, 2020, 66, 186-192.
  7. F Han, S Lv, Z Li, L Jin, B Fan*, J Zhang, R Zhang, X Zhang*, L Han, J Li*. Triple-synergistic 2D material- based dual-delivery antibiosis platform. NPG Asia Materials, 2020,12,15.
  8. J Ouyang†, X Ji†, X Zhang†, C Feng, Z Tang, N Kong, A Xie, J Wang, X Sui, L Deng, Y Liu, J S Kim, Y Cao, W Tao*. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020, 117 (46), 28667-28677. (highly cited paper, Highlighted by: MRS Bulletin Materials News)
  9. H Zhou*, Z Wang, W Zhao, X Tong, X Jin, X Zhang*, Y Yu, H Liu, Y Ma, S Li, W Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chemical Engineering Journal, 2020, 403, 126307.
  10. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 1124.
  11. X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 4777.
  12. J Meng, Q He, L Xu, X Zhang, F Liu, X Wang, Q Li, X Xu, G Zhang, C Niu, Z Identification of phase control of carbon-confined Nb2O5 nanoparticles towards high-performance lithium  storage.  Advanced Energy Materials, 2019, 9 (18), 1802695.
  13. J Wu, F Xu, S Li, Q, Liu, X Zhang, Q Liu, R Fu, D Wu. Porous polymers as multifunctional material platforms toward task‐specific applications. Advanced  Materials,  2019,  31(4),  1802922.  (Citation>145,  ESI Highly Cited Paper, Invited Paper)
  14. B Zheng, X Lin, X Zhang, D Wu, K Matyjaszewski. Emerging functional porous polymeric and carbonaceous materials for environment treatment and energy storage. Advanced Functional  Materials, 2019, 1907006. (Invited Paper)
  15. R Huang, X Chen, Y Dong, X Zhang*, Y Wei, Z Yang, W Li, Y Guo, J Liu, Z Yang*, H Wang*, L Jin*.

    MXene composite nanofibers for cell culture and tissue engineering. ACS Applied Bio Materials. 2020, 3(4), 2125-2131. 

  16. J Ouyang, C Feng, X Zhang, N, Kong, W. Tao. Black Phosphorus in Biomedical applications: Evolutionary Journey from Monoelemental Materials to Composite Materials. Accounts of Materials Research. 2021, 2, 7, 489–500. (Featured Cover Paper, ACS Editors` Choicechosen from the entire ACS portfolio).

Related micropatterned microfluidics studies:

1)https://www.nature.com/articles/s41578-020-00247-y

Imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission,material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment.

  1. Z Tang†, N Kong†, X Zhang†, Y Liu, P Hu, S Mou, P Liljeström, J Shi, W Tan, J S Kim, Y Cao, R Langer, K W. Leong, O C. Farokhzad, W Tao. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860. (Featured Cover Paper, highly cited paper, accessed>19,000 times, Impact Factor:71.189)

 2)https://www.nature.com/articles/s41467-019-12462-5

Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules

  1. M Chowdhury, W Zheng, S Kumari, J Heyman, X Zhang, P Dey, D Weitz, R Haag. Dendronized fluorosurfactants provide phenomenal droplet integrity to picolitre emulsions for therapeutics development. Nature Communications, 2019, 10, 4546 (Impact Factor:14.919).

3) https://doi.org/10.1021/acsnano.0c02701

An osmotic-pressure, pH, excretion, nutrition, gas, ionic-strength, flow-rate, and temperature (OPEN GIFT) microenvironment-controlled micropatterned microfluidic model (MMMM) for biomimetic in situ studies (BISS) in simulating the in vivo microenvironment to study in situ the stress applied to Giardia in the intestinal tract. 

  1. Y Wang, L Lu, G Zheng*, X Zhang*. Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano, 2020, 14(8), 9861-9872. (Featured Cover Paper, Impact Factor:15.881).

4) https://doi.org/10.1016/j.bios.2019.111597

  1. S Han†, Q Zhang†, X Zhang†, X Liu, L Lu, J Wei, Y Li, Y Wang, G A digital microfluidic diluter- based microalgal motion biosensor for marine pollution monitoring. Biosensors and Bioelectronics, 2019, 143, 111957 (Impact Factor:10.257).

5)  https://doi.org/10.2144/btn-2019-0134 

  1. L Liu, N Xiang, Z Ni, X Huang, J Zheng, Y Wang, X Zhang*. Step Emulsification: High throughput production of monodisperse droplets. BioTechniques, 2020, 68 (3), 114-116. (Invited Expert Paper)

6) https://doi.org/10.1016/j.nantod.2021.101152    https://authors.elsevier.com/a/1cv~x6DSyB6RP5

  1.  S Wang, Z Shen, Z Shen, Y Dong, Y Li, Y Cao, Y Zhang, S Guo, J Shuai, Y Yang, C Lin, M Guo, X Chen*, X Zhang*, Q Huang*. Machine-learning micropattern manufacturing. Nano Today, 2021, 38 (2021), 101152. (Impact Factor:20.722)

7) https://doi.org/10.1016/j.bioactmat.2021.04.014

  1. Z Li†, X Zhang† J Ouyang, D Chu, F Han, L Shi, R Liu, Z Guo, G Gu, W Tao, L Jin, J Li. Ca2+-supplying black phosphorus-based scaffolds developed with microfluidic technology for osteogenesis. Bioactive materials, 2021, 6(11), 4053-4064. (Instant Impact Factor:14.093).         

8) https://doi.org/10.1016/j.pmatsci.2020.100768 

Microfluidic technology for Theranostics.

  1. J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Bionanomaterials. Progress in Materials Science, 2021, 118, 100768. (Impact Factor:39.58)

9) https://doi.org/10.1007/s40820-021-00663-x

  1. M Chowdhury†, X Zhang, L Amini, A Faghani, A Singh, M Henneresse, R Haag. Functional Surfactants for Molecular Fishing, Capsule Creation, and Single-Cell Gene Expression.  Nano-Micro Letters, 2021, 13, 147. (Impact Factor:16.419)

 10) https://doi.org/10.1021/acs.analchem.1c00917

  1.  G Zheng, Q Gao, Y Jiang, L Lu, J Li,X Zhang, H Zhao, P Fan, Y Cui, F Gu, Y Wang.            Instrumentation-compact digital microfluidic (DMF) reaction interface extended  loop-mediated isothermal amplification (LAMP) for sample-to-answer testing of Vibrio parahaemolyticus. Analytical Chemistry, 2021, 93, 28, 9728–9736.

11) https://doi.org/10.1016/j.marpolbul.2019.04.063  https://doi.org/10.1166/jnn.2019.16752   https://doi.org/10.1109/ICSENS.2010.5690979.

  1. Zhang, Q., Zhang, X., Zhang, X., Jiang, L., Yin, J., Zhang, P., Han, S., Wang, Y.& Zheng, G. A feedback-controlling digital microfluidic fluorimetric sensor device for simple and rapid detection of mercury (II) in costal seawater. Marine pollution bulletin, 2019, 144, 20-27.   https://doi.org/10.1016/j.marpolbul.2019.04.063
  2. R Yang, Z Gong, X Zhang, L Que. Single-walled carbon nanotubes (SWCNTs) and poly(3,4- ethylenedioxythiophene) nanocomposite microwire-based electronic biosensor fabricated  by  microlithography and layer-by-layer nanoassembly. Journal of Nanoscience and Nanotechnology, 2019,19(12), 7591-7595. https://doi.org/10.1166/jnn.2019.16752 

Dr. Xingcai Zhang, Harvard/MIT Research Fellow; Science Writer/Editorial (Advisory) Board Member for Springer Nature, Elsevier, Materials Today, Royal Society of Chemistry, Wiley; Nature Nano Ambassador with 5 STEM degrees/strong background in sustainable Nature-derived/inspired/mimetic materials for biomed/sensing/catalysis/energy/environment applications, with more than 100 high-impact journal publications in Nature Reviews Materials (featured cover paper), etc. https://scholar.google.com/citations?hl=en&user=2vDraMoAAAAJ&view_op=list_works&sortby=pubdate

https://scholar.harvard.edu/xingcaizhang 

https://orcid.org/0000-0001-7114-1095

Contact: Dr. Xingcai Zhang xingcai@mit.edu  chemmike1984@gmail.com +1-2253041387 wechat:drtea1

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in