Call for papers: Recent Advances in Venom Toxicology
Published in Healthcare & Nursing and Biomedical Research
Deepening our understanding in Venom Toxicology
Venoms comprise a complex blend of diverse toxins that operate in a coordinated manner to swiftly disrupt the physiological functions of prey. When introduced into the human body, they give rise to a myriad of complications, posing challenges for clinicians. While the impact of venoms from certain medically significant snakes has been extensively studied, there is still much to discover regarding the effects of venoms from other snakes and over 200,000 venomous invertebrates.
In this collection, we welcome research and review articles addressing any venom and its toxins, along with their effects on various tissues. This encompasses basic and clinical research, as well as pre-clinical assessments of venoms.
The importance of digging deeper
Snake Venom Toxicology has been attracting increasing interests in recent years. Gaining insights into the effects of various venom toxins on different tissues is not only crucial for developing improved diagnostics and therapeutics for venomous bites but also facilitates exploration of the clinical and industrial applications of venoms for human benefit.
This Collection supports and amplifies research directly related to the United Nation's Sustainable Development Goal 3 (SDG 3) – Good Health and Well-being for all.
How can this collection help?
Our Top Collections like this one aims to support and promote high-quality science. They are led by Guest Editors who are experts in their fields, and supported by a dedicated team of Commissioning Editors, Managing Editors and In-House Editors at Springer Nature. Collection articles typically see higher citations, downloads, and Altmetric scores, and provide a one-stop-shop on a cutting-edge topic of interest.
Championing the exploration of Venom Toxicology

Dr. Sakthi Vaiyapuri is a Professor in Venom Pharmacology at the School of Pharmacy, University of Reading, UK, where he conducts research in developing novel strategies to mitigate snakebite burden globally. Other research topics in his lab include venom-induced muscle toxicity and coagulopathy and developing novel therapeutic strategies to tackle these conditions. As a Guest Editor for Discover Toxicology, he is keen to see Venom Toxicology highlighted on a global scale.
How can I submit my paper?

Visit the Collection page to find out more about this collection and submit your article.
Follow the Topic
-
Discover Toxicology
This is a fully open access, peer-reviewed journal that supports multidisciplinary research developments across the field of toxicology.
Related Collections
With Collections, you can get published faster and increase your visibility.
Toxic Pesticides and Planetary Health
Pesticides have played a crucial role in modern agriculture, safeguarding crops and ensuring global food security. However, their widespread and often indiscriminate use has raised serious concerns about their long-term impact on human health and the environment. From acute poisoning cases to chronic diseases and biodiversity loss, toxic pesticides pose a complex and pressing challenge that requires urgent scientific and policy-driven solutions.
This Collection of Discover Toxicology explores the dual challenge of monitoring toxic pesticides and the mitigation of their harmful effects on the environment and human health, while promoting sustainable alternatives. We invite cutting-edge research and reviews on innovative diagnostic techniques for detecting pesticide exposure, the development of novel biopesticides, precision agriculture strategies, and policy interventions that can reduce reliance on hazardous chemicals. Key topics include:
• Advances in biomonitoring and early detection methods for pesticide-related toxicity
• Environmentally friendly pest management alternatives to toxic pesticides, such as biopesticides and integrated pest management (IPM)
• The role of nanotechnology and AI-driven approaches in the reduction of pesticides and pesticide toxicity
• Mechanistic insights into pesticide toxicity and their effects on human and ecosystem health
• Policy frameworks and regulatory strategies for toxic pesticides and transition to sustainable agricultural practices
By fostering interdisciplinary dialogue and highlighting pioneering research, this Collection aims to contribute to a future where food production is both safe and sustainable. We encourage contributions from science and industry experts working towards reducing the global burden of toxic pesticides.
Keywords: Agrochemicals; Biomonitoring; Ecotoxicology; Environmental Contamination; Human Health Impacts; Sustainable Pest Management; Toxicology
Publishing Model: Open Access
Deadline: Mar 31, 2026
Molecular Mechanisms Involved in Metal Toxicity
Human activities release toxic metals into the environment. These metals pollute the soil, air, and water, which leads to the contamination of animals and plants. For the general population, food is the main route of exposure, and metals will accumulate in various organs depending on their specificity. There is strong evidence of a link between exposure to metals and the incidence of chronic diseases. However, the cellular and molecular mechanisms of metal toxicity are far to be understood. Consequently, there is an urgent need for a more profound understanding of the impact of metal pollution on human health. This understanding is essential for alerting public authorities and implementing new strategies to prevent it.
The aim of this Collection is to present an overview of recent data on metal toxicity related to cell dysfunction and disease progression, and to propose new studies or hypothesis. This collection is expected to include a variety of studies on toxic metals to which humans may be exposed in connection with environmental pollution. A particular emphasis will be placed on elucidating the mechanisms by which these metals are transported across the plasma membrane. Additionally, the impact of intracellular accumulation of these metals on the disruption of cell function at the metabolic, genomic, or signaling pathway levels will be examined. These studies may concern cellular or integrated models.
This Collection supports and amplifies research related to SDG 3.
Keywords: metal toxicology, metal poisoning, ion channels, transporters, cell signaling pathway, chronic diseases
Publishing Model: Open Access
Deadline: Jul 01, 2026
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in