Carvacrol modulates instability of xenobiotic metabolizing enzymes and downregulates the expressions of PCNA, MMP-2, and MMP-9 during diethylnitrosamine-induced hepatocarcinogenesis in rats

Hepatocellular carcinoma (HCC) is one type of malignant tumor that occurs in the liver. HCC is the fifth most common cancer worldwide and the third most common cause of cancer mortality.
Carvacrol modulates instability of xenobiotic metabolizing enzymes and downregulates the expressions of PCNA, MMP-2, and MMP-9 during diethylnitrosamine-induced hepatocarcinogenesis in rats
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Explore the Research

SpringerLink
SpringerLink SpringerLink

Carvacrol modulates instability of xenobiotic metabolizing enzymes and downregulates the expressions of PCNA, MMP-2, and MMP-9 during diethylnitrosamine-induced hepatocarcinogenesis in rats - Molecular and Cellular Biochemistry

Hepatocellular carcinoma is the fifth most common malignant tumor in the world, both in terms of incidence and mortality in Asian and Western countries. There are currently limited therapeutic regimens available for effective treatment of this cancer. Carvacrol is a predominant monoterpenoic phenol believed to impede cancer promotion and progression. The present study was conducted to decipher the role of carvacrol during diethylnitrosamine (DEN)-induced hepatocarcinogenesis in male wistar albino rats. Carvacrol (15 mg/kg body weight) suppressed the elevation of serum tumor marker enzymes, carcinoembryonic antigen, and α-feto protein induced by DEN. The activities of phase I enzymes increased markedly during DEN induction, but was found to be significantly lowered upon carvacrol treatment. On the contrary, the phase II enzymes decreased in DEN-administered animals, which was improved normalcy upon carvacrol-treated animals. DEN-administered animals showed increased mast cell counts, argyrophilic nucleolar organizing regions, proliferating cell nuclear antigen, and matrix metalloproteinases (MMPs-2/9), whereas carvacrol supplementation considerably suppressed all the above abnormalities. The results suggest that the carvacrol exhibited the potential anticancer activity by inhibiting cell proliferation and preventing metastasis in DEN-induced hepatocellular carcinogenesis.

The results of the present study conclusively demonstrate that carvacrol attenuates hepatocellular carcinoma through inhibition of cell proliferation and tumor metastasis. This is evidenced by the down-regulation of PCNA, MMP-2, and MMP-9; overexpression of these proteins is associated with tumorigenesis. Carvacrol modulates the instability of xenobiotic metabolizing enzymes and decreases the levels of tumor markers, also indicating the antitumor activity of carvacrol. Further studies are underway to elucidate the detailed mechanism of action of carvacrol as an antitumor agent in the treatment of hepatocellular carcinoma.