🎉 Catal Launches AI Video Summaries!

Published in Chemistry and Materials

🎉 Catal Launches AI Video Summaries!
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Catal now features AI-generated, author-approved video summaries for selected research articles. These short, engaging videos make complex science easier to understand—perfect for researchers, students, and science enthusiasts.

âś… Scientifically accurate
âś… Easy to share
âś… Designed for impact

🎬 Watch the first video summary:
CuNi@Pt-Cu nano-octahedra for enhanced formic acid electrooxidation

New AI video summary

More summaries coming soon—stay tuned!

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Materials for Energy and Catalysis
Physical Sciences > Materials Science > Materials for Energy and Catalysis
Catalysis
Physical Sciences > Chemistry > Industrial Chemistry > Catalysis
Catalysis
Physical Sciences > Chemistry > Inorganic Chemistry > Catalysis
Catalysis
Physical Sciences > Chemistry > Organic Chemistry > Catalysis
Catalysis
Physical Sciences > Chemistry > Physical Chemistry > Catalysis
Catalyst Synthesis
Physical Sciences > Chemistry > Chemical Synthesis > Catalyst Synthesis
  • Catal Catal

    Catal is an open access journal covering full spectrum of catalysis critical advances. From biocatalysts to heterogeneous catalysts, it integrates fundamental and applied sciences. Catal offers a primary platform for researchers and practitioners in the field.

Related Collections

With Collections, you can get published faster and increase your visibility.

Bio-Catalysis in Circular Bioeconomy and Green Chemistry

This collection emphasizes the role of bio-catalysis in advancing the circular bioeconomy, focusing on enzymatic transformations and eco-friendly processes that valorize renewable feedstocks. Contributions should highlight innovative applications of bio-catalysis in waste-to-value systems, biorefineries, and green chemical synthesis.

Catal invites research articles, reviews and reports on the topic of the development of enzymes, metabolic engineering, and integration of bio-catalysis into industrial processes, aiming to reduce dependency on fossil-based resources and promote sustainable practices.

Publishing Model: Open Access

Deadline: Dec 31, 2025

Nanocatalysis and Thermocatalysis in Precision Chemical Synthesis

This collection, hosted by Catal, highlights the intersection of nanocatalysis and thermocatalysis in precision chemical synthesis. It aims to disseminate cutting-edge research that drives innovation in catalytic materials, selective processes, and reaction pathways, fostering advancements in the production of fine chemicals and specialty compounds. Aligned with Catal's mission to prioritize impactful catalytic applications, this collection welcomes contributions from established and early-career researchers that advance both theoretical and applied catalysis.

The collection embraces the breadth of Catal’s coverage, including topics such as nanostructured catalysts, thermocatalytic processes, and advanced synthesis strategies. Contributions may explore catalytic mechanisms, computational modeling, or experimental breakthroughs, offering insights into scalable industrial applications and fundamental research. Articles types—original research, reviews, perspectives, and analyses—are all encouraged, ensuring a diverse platform for sharing high-impact advancements in catalysis.

Publishing Model: Open Access

Deadline: Dec 31, 2025