Constrained chaos in the pathobiome of a new slow spreading coral disease
Published in Microbiology
In the latest recorded mass-bleaching event (2017-2018), 15,000 km2 of reef area were impacted - an area larger than a football field for every visitor of the English premier league in these years. If we are to put an economic value on this devastation, it is estimated that that bleaching event alone cost the world in excess of US$1.5-9 billion of ecological services, not to mention the biodiversity loss in various locations around the world.
It is now widely agreed that if reefs are to stand a chance in the coming century, we have to limit the production of greenhouse gases, restricting the warming of sea surface temperatures. But, it is not only high temperature - causing heat stress and subsequent coral bleaching - we have to worry about. Often reefs collapse due to the interaction of multiple stressors. The preacher might speak of the apocalyptic riders of coral reef destruction. Besides heat-stress, these are habitat degradation, nutrient pollution and on its pale horse coral disease.
Especially the combination of heat-stress and disease has proven to be fatal. Often corals can recover from heat-stress and subsequent bleaching, which does not automatically lead to their death. But, bleaching weakens their immune defence, which makes them susceptible to diseases, such as white syndrome or black-band disease and diseases can wipe out entire reefs after bleaching events.
Many of the coral diseases known to date exhibit rapid rates of infection and disease progression. The new coral disease, which we described in our study (https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0759-6) shows that despite a number of similarities with other diseases, grey patch disease shows surprisingly slow progression rates and a relative low virulence. This slow infection process provided us with the opportunity to investigate infection dynamics between disease and the coral host in much greater detail than it has been done before. And what we found was a microbial battle field.
Corals are characterised by a relatively simple level of cellular organisation. But they build relationships with algae and bacteria of fascinating complexity. This turns them into what is being dubbed as a meta-organism, with their own microbiome representing a rich assembly of algae, viruses, fungi, bacteria and protists. When a coral gets exposed to a disease, the pathogens first have to compete with the ‘smaller’ players in the coral meta-organism before they can establish themselves and destroy the coral tissue.
We have shown that in the case of the grey patch disease, the process of overcoming the coral defences and disrupting its microbiome is the work of several interacting pathogenic microbes. Histological analyses of coral tissues and electron microscopy revealed that specific fungi and cyanobacteria grow together below the coral surface and undermine coral tissue close to the skeleton. At the same time, small coccoid bacteria and ciliates drill into coral tissue and launch a surface attack.
Nevertheless, the coral meta-organism (also referred to as the ‘holobiont’) is able to fight back. Across two field seasons, we observed the dynamics of disease patches on affected corals. And while some of the disease patches progressed, the lesions in other corals stopped and healthy tissue was able to grow back, recolonizing the corals white skeleton. Making these observations was indeed like observing a microbial battlefield between two alternative communities and a moving front line.
Further in depth assessments of the microbial community structure, showed us that different disease patches were surprisingly (and in contrast to current ecological theory) very similar to each other. We believe that this similarity can be explained by the tight competition between the coral meta-organism and the disease benefiting microbial community. Only when a certain assemblage of collaborating pathogenic microbes is present, they can compete against the coral. If some of these agents are lost, however, the coral can win the battle, recolonizing previously lost terrain.
From the perspective of a coral, being infected by grey patch disease may actually be not all that bad, that is in comparison to other more deadly diseases such as the one spreading fast through the Caribbean as we speak (Stony Coral Tissue Loss Disease). The question now is whether we can use this knowledge to help corals affected by these other diseases. For example, black-band disease, which has rapid outbreaks and causes high rates of coral loss, is remarkably similar to our newly discovered disease and known to be caused by a similar consortium of pathogens. If we inflict a disruption on the disease loving microbial communities, maybe we will be able to decrease their virulence and aid the coral in its micro war. Indeed, the use of probiotics (aka the good bacteria) has been proposed as one way to fight the onslaught of factors affecting our reefs around the world. In this instance, inoculation with good bacteria would at the very least slow down the apocalyptic tandem of heat-stress and coral disease.
Follow the Topic
-
Microbiome
This journal hopes to integrate researchers with common scientific objectives across a broad cross-section of sub-disciplines within microbial ecology. It covers studies of microbiomes colonizing humans, animals, plants or the environment, both built and natural or manipulated, as in agriculture.
Related Collections
With Collections, you can get published faster and increase your visibility.
Harnessing plant microbiomes to improve performance and mechanistic understanding
This is a Cross-Journal Collection with Microbiome, Environmental Microbiome, npj Science of Plants, and npj Biofilms and Microbiomes. Please click here to see the collection page for npj Science of Plants and npj Biofilms and Microbiomes.
Modern agriculture needs to sustainably increase crop productivity while preserving ecosystem health. As soil degradation, climate variability, and diminishing input efficiency continue to threaten agricultural outputs, there is a pressing need to enhance plant performance through ecologically-sound strategies. In this context, plant-associated microbiomes represent a powerful, yet underexploited, resource to improve plant vigor, nutrient acquisition, stress resilience, and overall productivity.
The plant microbiome—comprising bacteria, fungi, and other microorganisms inhabiting the rhizosphere, endosphere, and phyllosphere—plays a fundamental role in shaping plant physiology and development. Increasing evidence demonstrates that beneficial microbes mediate key processes such as nutrient solubilization and uptake, hormonal regulation, photosynthetic efficiency, and systemic resistance to (a)biotic stresses. However, to fully harness these capabilities, a mechanistic understanding of the molecular dialogues and functional traits underpinning plant-microbe interactions is essential.
Recent advances in multi-omics technologies, synthetic biology, and high-throughput functional screening have accelerated our ability to dissect these interactions at molecular, cellular, and system levels. Yet, significant challenges remain in translating these mechanistic insights into robust microbiome-based applications for agriculture. Core knowledge gaps include identifying microbial functions that are conserved across environments and hosts, understanding the signaling networks and metabolic exchanges between partners, and predicting microbiome assembly and stability under field conditions.
This Research Topic welcomes Original Research, Reviews, Perspectives, and Meta-analyses that delve into the functional and mechanistic basis of plant-microbiome interactions. We are particularly interested in contributions that integrate molecular microbiology, systems biology, plant physiology, and computational modeling to unravel the mechanisms by which microbial communities enhance plant performance and/or mechanisms employed by plant hosts to assemble beneficial microbiomes. Studies ranging from controlled experimental systems to applied field trials are encouraged, especially those aiming to bridge the gap between fundamental understanding and translational outcomes such as microbial consortia, engineered strains, or microbiome-informed management practices.
Ultimately, this collection aims to advance our ability to rationally design and apply microbiome-based strategies by deepening our mechanistic insight into how plants select beneficial microbiomes and in turn how microbes shape plant health and productivity.
This collection is open for submissions from all authors on the condition that the manuscript falls within both the scope of the collection and the journal it is submitted to.
All submissions in this collection undergo the relevant journal’s standard peer review process. Similarly, all manuscripts authored by a Guest Editor(s) will be handled by the Editor-in-Chief of the relevant journal. As an open access publication, participating journals levy an article processing fee (Microbiome, Environmental Microbiome). We recognize that many key stakeholders may not have access to such resources and are committed to supporting participation in this issue wherever resources are a barrier. For more information about what support may be available, please visit OA funding and support, or email OAfundingpolicy@springernature.com or the Editor-in-Chief of the journal where the article is being submitted.
Collection policies for Microbiome and Environmental Microbiome:
Please refer to this page. Please only submit to one journal, but note authors have the option to transfer to another participating journal following the editors’ recommendation.
Collection policies for npj Science of Plants and npj Biofilms and Microbiomes:
Please refer to npj's Collection policies page for full details.
Publishing Model: Open Access
Deadline: Jun 01, 2026
Microbiome and Reproductive Health
Microbiome is calling for submissions to our Collection on Microbiome and Reproductive Health.
Our understanding of the intricate relationship between the microbiome and reproductive health holds profound translational implications for fertility, pregnancy, and reproductive disorders. To truly advance this field, it is essential to move beyond descriptive and associative studies and focus on mechanistic research that uncovers the functional underpinnings of the host–microbiome interface. Such studies can reveal how microbial communities influence reproductive physiology, including hormonal regulation, immune responses, and overall reproductive health.
Recent advances have highlighted the role of specific bacterial populations in both male and female fertility, as well as their impact on pregnancy outcomes. For example, the vaginal microbiome has been linked to preterm birth, while emerging evidence suggests that gut microbiota may modulate reproductive hormone levels. These insights underscore the need for research that explores how and why these microbial influences occur.
Looking ahead, the potential for breakthroughs is immense. Mechanistic studies have the power to drive the development of microbiome-based therapies that address infertility, improve pregnancy outcomes, and reduce the risk of reproductive diseases. Incorporating microbiome analysis into reproductive health assessments could transform clinical practice and, by deepening our understanding of host–microbiome mechanisms, lay the groundwork for personalized medicine in gynecology and obstetrics.
We invite researchers to contribute to this Special Collection on Microbiome and Reproductive Health. Submissions should emphasize functional and mechanistic insights into the host–microbiome relationship. Topics of interest include, but are not limited to:
- Microbiome and infertility
- Vaginal microbiome and pregnancy outcomes
- Gut microbiota and reproductive hormones
- Microbial influences on menstrual health
- Live biotherapeutics and reproductive health interventions
- Microbiome alterations as drivers of reproductive disorders
- Environmental factors shaping the microbiome
- Intergenerational microbiome transmission
This Collection supports and amplifies research related to SDG 3, Good Health and Well-Being.
All submissions in this collection undergo the journal’s standard peer review process. As an open access publication, this journal levies an article processing fee (details here). We recognize that many key stakeholders may not have access to such resources and are committed to supporting participation in this issue wherever resources are a barrier. For more information about what support may be available, please visit OA funding and support, or email OAfundingpolicy@springernature.com or the Editor-in-Chief.
Publishing Model: Open Access
Deadline: Jun 16, 2026
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in