Cracking the Genetic Code of Glioblastoma: The Hidden Role of HOX Genes

What if the same genes that shaped us during early development were also driving one of the most lethal brain cancers?
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Explore the Research

SpringerLink
SpringerLink SpringerLink

HOX gene dysregulation in glioblastoma: a narrative review of current advances - Discover Oncology

HOX (homeobox) genes are virtually absent in healthy adult brains but are detected in malignant brain tumors, particularly gliomas. In 2021, the World Health Organization (WHO) classified adult-type diffuse gliomas into three distinct categories: astrocytomas (isocitrate dehydrogenase [IDH]-mutated), oligodendrogliomas (IDH-mutated and 1p/19q-deleted), and glioblastomas, IDH-wildtype (GBM). GBM is the most common and aggressive primary malignant tumor of the Central Nervous System (CNS), characterized by its high recurrence rate and rapid growth. Dysregulation of HOX genes is a well-established phenomenon in both solid and liquid malignancies, playing crucial roles in various fundamental characteristics of cancer, including GBM. In recent years, HOX genes have gained recognition not only as key regulators of tumor progression but also as potential biomarkers for predicting disease outcomes and as promising therapeutic targets for GBM. This review compiles the latest research on HOX genes in GBM, encompassing studies published before and after the 2021 WHO classification of CNS tumors. Our goal is to provide a comprehensive overview of key findings on the role of HOX gene clusters, which are groups of genes involved in regulating the development of the body plan along the anterior–posterior axis, in GBM initiation, progression, prognosis, and treatment response.

🔬 Why HOX Genes?

HOX (Homeobox) genes are essential during embryonic development. Like master architects, they determine where the head, tail, arms, and legs form. These genes are highly conserved across species and play a crucial role in organizing the body’s structure along the anterior-posterior axis.

But in recent years, researchers have discovered that HOX genes can be reactivated or dysregulated in cancer—and not just any cancer. In glioblastoma (GBM), one of the deadliest forms of brain tumor, abnormal HOX gene expression has been linked to:

  • Tumor growth

  • Therapeutic resistance

  • Poor survival outcomes

This unexpected connection between developmental biology and cancer progression caught our attention. 

The genomic architecture of the HOX family is present in each of the four loci. Humans have four loci of HOX genes: HOXA contains 11 genes, located in chromosome 7p15.2; HOXB contains 10 genes, located in chromosome 17q21.3; HOXC contains 9 genes, located in chromosome 12q13.3; HOXD contains 9 genes, located in the chromosome 2q31 (p represent the short arm of the chromosome, q represent the long arm of the chromosome). During embryonic development, HOX genes are expressed sequentially in partially overlapping zones along the anterior-posterior axis.

🧠 The Glioblastoma Challenge

Glioblastoma is an aggressive, fast-growing tumor with a notoriously poor prognosis. Despite surgery, radiation, and chemotherapy, the average survival time remains just 12–15 months after diagnosis.

We wondered—could HOX genes be one of the hidden drivers behind glioblastoma’s resistance and rapid progression?


🧾 What We Did?

We conducted an in-depth review of the scientific literature to answer this question. Our article:

  • Summarizes the current knowledge about HOX gene expression in GBM

  • Highlights specific HOX genes (like HOXA9, HOXA10, and HOXD10) that are linked to treatment resistance

  • Explores the connection between HOX gene activity and glioma stem cells, tumor microenvironment, and immune evasion

  • Discusses the implications of HOX genes as biomarkers and therapeutic targets

This is the first narrative review focused specifically on HOX gene dysregulation in GBM.

🚀 Why It Matters

Our findings suggest that HOX genes are more than developmental relics—they may be active participants in the progression and treatment resistance of glioblastoma.

Understanding how and why these genes become dysregulated could lead to:

  • Improved diagnostic tools

  • Personalized treatment strategies

  • New targets for drug development


📖 Behind the Scenes

This project brought together my passion for computational genomics and my fascination with developmental biology. It reminded me how genes that build life can also contribute to its breakdown, depending on the context.

Writing this review wasn’t just an academic task—it was an effort to bridge two fields and encourage researchers to see cancer through a broader genetic lens.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Brain Cancer
Life Sciences > Biological Sciences > Neuroscience > Neurological Disorders > CNS Cancer > Brain Cancer
Genetics
Life Sciences > Biological Sciences > Genetics and Genomics > Genetics
  • Discover Oncology Discover Oncology

    This is a fully open access general oncology journal that aims to provide a unified forum for researchers and clinicians. The journal spans from basic and translational science, to preclinical, clinical, and epidemiology, and welcomes content that interfaces at all levels of cancer research.

Related Collections

With Collections, you can get published faster and increase your visibility.

Single-Cell RNA Sequencing in Cancer Immunotherapy

Cancer immunotherapy is a hot area of current oncology research, with its core focus on activating or enhancing the body's immune system's ability to recognize and kill cancer cells. However, cancer cells possess complex heterogeneity and dynamics, which affect the efficacy of immunotherapy in many ways. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool in recent years, providing us with an unprecedented insight into the cellular heterogeneity and dynamics within tumors. This technology has revolutionized our understanding of cancer biology, especially in the context of cancer immunotherapy. By enabling researchers to analyze individual cells, scRNA-seq allows them to identify distinct cell populations, track cellular responses to treatments, and discover new therapeutic targets. This collection aims to compile cutting-edge research in this field and explore the various applications of single-cell RNA sequencing in cancer immunotherapy.

This collection will cover the following topics: 1. The latest advances in single-cell RNA sequencing technology in cancer immunotherapy, including research on technology optimization and data interpretation; 2. Using single-cell RNA sequencing to reveal the characteristics of immune cell subgroups in the tumor microenvironment and their interaction mechanisms with cancer cells; 3. Analyzing the molecular basis of immune therapy response and resistance through single-cell RNA sequencing, exploring new biomarkers and therapeutic targets; 4. Combining single-cell RNA sequencing with clinical studies of immunotherapy to assess treatment outcomes, predict patient prognosis, and optimize treatment plans.

Keywords: cancer immunotherapy, single-cell RNA sequencing, therapeutic targets, tumor microenvironment, treatment response

Publishing Model: Open Access

Deadline: Dec 19, 2025

Immune Checkpoint Inhibitors in Cancer: Mechanisms, Clinical Applications, and Future Directions

Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment by harnessing the body's immune system to target and eliminate tumor cells. These inhibitors, which include antibodies targeting CTLA-4, PD-1, and PD-L1, have shown remarkable efficacy in various cancer types, leading to durable responses and prolonged survival in patients who had limited treatment options. The success of ICIs in oncology has sparked a surge in research focused on understanding their mechanisms of action, identifying biomarkers for response, managing immune-related adverse events, and expanding their application to a broader range of malignancies.

However, despite the transformative impact of ICIs, many challenges remain. The majority of patients do not achieve complete responses, resistance to therapy is common, and the long-term effects of immune modulation are not fully understood. Ongoing research is crucial to optimize the use of ICIs, overcome resistance, and develop combination therapies that can enhance their efficacy.

This Collection aims to compile cutting-edge research and reviews on immune checkpoint inhibitors in cancer, encompassing a wide range of topics that reflect the current state and future directions of this rapidly evolving field. The issue will include but is not limited to the following themes:

Mechanisms of Action: Exploration of how ICIs modulate immune responses against cancer, including molecular and cellular mechanisms.

Clinical Applications: Studies on the efficacy and safety of ICIs in various cancer types, including ongoing clinical trials and real-world evidence.

Biomarkers of Response and Resistance: Research on predictive biomarkers for ICI efficacy, including genetic, proteomic, and immunological factors.

Combination Therapies: Investigations into the synergistic effects of ICIs with other treatment modalities, such as chemotherapy, radiation, targeted therapy, and other immunotherapies.

Management of Immune-Related Adverse Events (irAEs): Studies focusing on the identification, prevention, and management of irAEs associated with ICIs.

Emerging Targets and Future Directions: Reviews and original research on novel immune checkpoint targets beyond PD-1/PD-L1 and CTLA-4, and innovative therapeutic strategies in development.

Ethical, legal, and regulatory challenges arising from the ever-growing implementation of highly innovative techniques, and how to best meet such challenges in order to ensure equitable, patient-centered access to the most effective personalized/precision medicine-based diagnostics/therapeutics approaches as they become available.

We believe that this Collection will not only provide valuable insights into the current challenges and opportunities associated with ICIs but also serve as a comprehensive resource for researchers and healthcare professionals dedicated to improving cancer outcomes.

Keywords: immune checkpoint inhibitors, cancer treatment, biomarkers, immune-related adverse events, immune checkpoint targets

Publishing Model: Open Access

Deadline: Dec 31, 2025