Jieyun Bai's Challenge Paper "IUGC: A Benchmark of Landmark Detection in End-to-End Intrapartum Ultrasound Biometry"
Published in Bioengineering & Biotechnology
Accurate intrapartum biometry plays a crucial role in monitoring labor progression and preventing complications. However, its clinical application is limited by challenges such as the difficulty in identifying anatomical landmarks and the variability introduced by operator dependency. To overcome these challenges, the Intrapartum Ultrasound Grand Challenge (IUGC) 2025, in collaboration with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), was organized to accelerate the development of automatic measurement techniques for intrapartum ultrasound analysis. The challenge featured a large-scale, multi-center dataset comprising over 32,000 images from 24 hospitals and research institutes. These images were annotated with key anatomical landmarks of the pubic symphysis (PS) and fetal head (FH), along with the corresponding biometric parameter-the angle of progression (AoP). Ten participating teams proposed a variety of end-to-end and semi-supervised frameworks, incorporating advanced strategies such as foundation model distillation, pseudo-label refinement, anatomical segmentation guidance, and ensemble learning. A comprehensive evaluation revealed that the winning team achieved superior accuracy, with a Mean Radial Error (MRE) of 6.53 ± 4.38 pixels for the right PS landmark, 8.60 ± 5.06 pixels for the left PS landmark, 19.90 ± 17.55 pixels for the FH tangent landmark, and an absolute AoP difference of 3.81 ± 3.12°. This top-performing method demonstrated accuracy comparable to expert sonographers, emphasizing the clinical potential of automated intrapartum ultrasound analysis. However, challenges remain, such as the trade-off between accuracy and computational efficiency, the lack of segmentation labels and video data, and the need for extensive multi-center clinical validation. IUGC 2025 thus sets the first benchmark for landmark-based intrapartum biometry estimation and provides an open platform for developing and evaluating real-time, intelligent ultrasound analysis solutions for labor management.
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in