Neuromorphic device based on silicon nanosheets

Silicon is vital for its high abundance, vast production, and perfect compatibility with the well-established CMOS processing industry. This article presents neuromorphic devices based on silicon nanosheets that are chemically exfoliated, enabling self-assembly into hierarchical stacking structures.
Neuromorphic device based on silicon nanosheets
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

This work demonstrated the versatile SiNSs-based neuromorphic device, which extended Si technology to next-generation computation like SNN, a crucial step towards cognitive integration in artificial intelligence systems. We investigated the unipolar memristor-like behavior based on the NDR and device capacitance, as well as the synaptic response with effective reset ability based on the high capacitance originated from the layered structure and the rectification behavior of SiNSs-Au junctions. Then, we analytically described characteristics, including LTM, STDP, which were essential for neuromorphic calculations. Finally, we demonstrated an SNN inspired by device behaviors, which was proved effective for digit recognition and noise filtration.

In addition, we envision other emerging research areas to encourage in-depth investigation for the potential of SiNSs in SNN and their integration with Si-based electronics. First, photoemission of SiNSs demonstrated the possibility for optoelectronic. Second, given the compatibility with the solution process on soft substrate like PET, our SiNSs demonstrate the possiblility for flexible device fabrication. Third, the CMOS-compatible SNN arrays are attractive for fabrication with existing Si technology. These exciting topics require further study to bridge the gap between technologies of artificial intelligence and the well-established Si industry.

https://www.nature.com/articles/s41467-022-32884-y

Nature Communications volume 13, Article number: 5216 (2022)

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Electrical and Electronic Engineering
Technology and Engineering > Electrical and Electronic Engineering

Related Collections

With collections, you can get published faster and increase your visibility.

Biology of rare genetic disorders

This cross-journal Collection between Nature Communications, Communications Biology, npj Genomic Medicine and Scientific Reports brings together research articles that provide new insights into the biology of rare genetic disorders, also known as Mendelian or monogenic disorders.

Publishing Model: Open Access

Deadline: Jan 31, 2025

Carbon dioxide removal, capture and storage

In this cross-journal Collection, we bring together studies that address novel and existing carbon dioxide removal and carbon capture and storage methods and their potential for up-scaling, including critical questions of timing, location, and cost. We also welcome articles on methodologies that measure and verify the climate and environmental impact and explore public perceptions.

Publishing Model: Open Access

Deadline: Mar 22, 2025