Tentacular team up: Deep partnerships between sea anemones and bacteria
Published in Ecology & Evolution

The vast blue surface of the ocean… as far as the eye can see. Far away from the frenetic pace of humans. We have come to a place 80 miles off the coast of La Paz, Mexico to explore what lies beneath this thin ocean skin. In 2018, in collaboration with the Schmidt Ocean Institute (SOI), an interdisciplinary team of geologists, chemists, microbiologists and biologists embarked on a 21-day expedition aboard the R/V Falkor. The biologists on board hoped to witness a fascinating animal community in what is the largest habitat on Earth – the deep sea. Multibeam echosounders, magnetic instruments, and an autonomous underwater vehicle (AUV) equipped with sonars and seismic sensors were first deployed to gather broad information about the seafloor and form a big picture. Following, a remotely operated vehicle (ROV) named SuBastian, owned by SOI, conducted centimeter-scale resolution mapping using a low altitude survey system, employed for the first time at such deep depths, providing an unprecedented view of the geological and geochemical controls on animal communities at underwater volcanoes, known as hydrothermal vents.

The biologists on our expedition aimed to investigate the density, distribution, diversity, and metabolism of organisms thriving at hydrothermal vents deep in the Pescadero Basin (3700 meters, or ~2.3 miles below). One of these vent fields was discovered in 2012 by scientists using drones that detected thermal anomalies and bottom features consistent with hydrothermal venting. These Pescadero Basin vents in the southernmost Gulf of California differ dramatically from nearby vent fields, most strikingly in their unusual animal communities, with many new species and numerous others found that were not expected to live in the area. Included in this group of unusual fauna was a very abundant white sea anemone that unexpectedly appeared to thrive very near to vigorously venting fluids.

This anemone species, named Ostiactis pearseae, was very abundant, living tucked in between 3-foot tall tubeworms and sulfide-oxidizing clams. Anemones normally capture either large prey using stinging harpoons or small particles suspended in seawater using sticky tentacles. Neither of these strategies appeared to be the primary mode of dining by O. pearseae. Further, we knew from past studies that animals in the areas of highest volcanic activity usually take advantage of chemical energy for their sustenance, rather than energy from the overlying sunlit ocean far above. Incredibly, as we detail in our recent paper published Jan 18, 2021 in BMC Biology, this anemone receives nutrition from bacteria living inside of their skin cells, that use the chemical compound hydrogen sulfide to fuel organic carbon production. This trick is all the more strange given that other related reef-building corals and anemones house symbionts in their digestive system, on the outside of their cells. Our understanding of this phenomenon was made possible by a collaboration among an international science team involving undergraduates and science faculty from both a small liberal arts college and several research universities, as well as scientists at the American Museum of Natural History in New York. We are very excited to revisit this site in October 2021 to explore unanswered questions about this extreme alliance between marine invertebrates and beneficial bacteria.
- Shana Goffredi (Occidental College) and Allison Miller (Schmidt Ocean Institute)
Photos copyright SOI. Contact sgoffredi at oxy.edu with questions or further inquiries about this work.
Goffredi, S.K., Motooka, C., Fike, D.A. et al. Mixotrophic chemosynthesis in a deep-sea anemone from hydrothermal vents in the Pescadero Basin, Gulf of California. BMC Biol 19, 8 (2021). https://doi.org/10.1186/s12915-020-00921-1
Follow the Topic
-
BMC Biology
This is an open access journal publishing outstanding research in all areas of biology, with a publication policy that combines selection for broad interest and importance with a commitment to serving authors well.
Related Collections
With Collections, you can get published faster and increase your visibility.
Organoids: advancements in normal development and disease modeling, and Regenerative Medicine
BMC Biology is calling for submissions to our Collection on Organoids: advancements in normal development and disease modeling, and Regenerative Medicine. This Collection seeks to bring together cutting-edge research on the use of organoids as models of normal organ development and human disease, as well as transplantable material for tissue regeneration and as a platform for drug screening.
Studies can be based on organoids derived from either induced pluripotent stem cells or tissue-derived cells (embryonic or adult stem cells or progenitor or differentiated cells from healthy or diseased tissues, such as tumors).
We welcome submissions focusing on studies investigating the mechanisms of self-organization and cellular differentiation within organoids, and how these processes recapitulate human tissue architecture and pathology. We are especially interested in studies addressing the issues of improving tissue patterning, specialization, and function, and avoiding tumorigenicity after transplantation of organoids. We will also consider studies that demonstrate the application of organoids in personalized medicine, such as drug screening, toxicity testing, and the identification of novel therapeutic targets.
We are interested in studies focusing on the refinement of methods to enhance the fidelity and functional maturity of organoids, especially those integrating organoid models with cutting-edge technologies such as advanced imaging, single-cell and spatial omics, microfluidic chip systems and bioprinting.
This Collection supports and amplifies research related to SDG 3: Good Health and Well-Being.
All manuscripts submitted to this journal, including those submitted to collections and special issues, are assessed in line with our editorial policies and the journal’s peer review process. Reviewers and editors are required to declare competing interests and can be excluded from the peer review process if a competing interest exists.
Publishing Model: Open Access
Deadline: Mar 15, 2026
Environmental microbiology
BMC Biology is calling for submissions to our Collection on Environmental microbiology. Environmental microbiology is a rapidly evolving field that investigates the interactions between microorganisms and their surrounding environments, including plants, soil, water, and air. This area of research encompasses a diverse range of organisms, from bacteria and protists to extremophiles, and seeks to understand their roles in various ecological processes. By examining microbial communities and their functions, researchers can gain insights into plant-microbe interactions, biogeochemical cycles, nutrient cycling, and ecosystem dynamics. Furthermore, the study of the microbiome in different habitats is crucial for understanding biodiversity, ecosystem resilience, and the potential applications of microbes in environmental remediation. Advancements in molecular biology and bioinformatics have significantly enhanced our understanding of microbial ecology and the intricate relationships that underpin environmental systems. Understanding these interactions is essential for addressing pressing global issues such as climate change, pollution, and ecosystem degradation to develop sustainable strategies for environmental conservation and restoration.
Potential topics include but are not limited to:
Plant-associated microbes in sustainable agriculture
Microbiomes and symbioses in aquatic ecosystems
Microbial contributions to biogeochemical cycles
Community structure and dynamics in soil, water, air, and extreme environments
Extremophiles and their ecological significance
Pathogen Ecology
Host-Microbe Environmental Interactions
Effects of climate change and environmental stressors on microbial communities
Methodological Advances in environmental microbiology
This Collection supports and amplifies research related to SDG 6: Clean water and Sanitation, SDG 13: Climate Action, SDG 14: Life Below Water, and SDG 15: Life on Land.
All manuscripts submitted to this journal, including those submitted to collections and special issues, are assessed in line with our editorial policies and the journal’s peer review process. Reviewers and editors are required to declare competing interests and can be excluded from the peer review process if a competing interest exists.
Publishing Model: Open Access
Deadline: Apr 25, 2026
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in