Beyond Contamination: How Antibiotic Resistant Bacteria are Spreading in Nigeria's Drinking Water
Published in Microbiology
Water scarcity has been a challenge in Nigeria for decades, but beyond the issue of availability, there is a sinister threat that doesn't make headlines: antibiotic-resistant bacteria silently circulating through water. As with many parts of Africa, Kaduna state has its issues with adequate potable water for the population of around 9 million people. Where the municipal pipe-borne water is inadequate or unavailable, individuals depend on water from hand-dug wells, boreholes, streams and commercially available treated water sealed in polythene sachets, popularly known in local parlance as "pure water".
In previous years, the research on antibiotic- resistant bacteria in Nigeria focused majorly on bacteria isolated from clinical settings. This research however, which was carried out between 2014 and 2015, focused on detecting antibiotic resistant Salmonella enterica from various sources of drinking water in Kaduna state. This organism is well known to include serovars that cause diseases such as typhoid fever (which is endemic in Nigeria) and salmonellosis. The symptoms of these diseases can include fever and gastroenteritis, organ failure, shock and death.
The Quest for Answers
As part of her Ph.D research, Dr. Olajoke Alalade under the guidance of her supervisors from Ahmadu Bello University, Zaria collected 500 water samples from diverse sources: packaged water in sachets, municipal treated tap water, wells, boreholes, and streams across six different local government areas across Kaduna State. They were specifically hunting for Salmonella enterica and more importantly, they wanted to know if these bacteria were resistant to the antibiotics we rely on to treat infections. Those that showed resistance were assayed for the presence of some genes responsible for the resistance.
What They Found
Only six samples contained Salmonella enterica, giving an isolation rate of 1.2 %. This may seem low, but it is significant because this bacteria should not be present in water used for drinking. The sources of water where these resistant bacteria were obtained was troubling. Five isolates came from hand-dug wells and boreholes, which are common water sources for many rural and urban families. Most alarming, was finding resistant Salmonella in treated municipal water, the very supply that should be safest after undergoing purification processes. This discovery suggested that either the treatment was inadequate or the ageing distribution pipes had a source of post-treatment contamination.
Four isolates were resistant to multiple antibiotics, showing particular resistance to tetracycline, which is an affordable, widely available antibiotic used across Nigeria. Two-thirds of the isolates were resistant to this drug, along with nalidixic acid and sulfamethoxazole-trimethoprim, which are all front-line antibiotics that are available for purchase over the counter.
The Genetic Evidence
What makes this study particularly significant is that the researchers also found the genetic back up that explained the resistance. Two of the bacterial isolates harbored genes tetA and sul1. These carry genetic information that enable bacteria resist the actions of tetracycline and sulfamethoxazole- trimethoprim. The tetA gene gives bacteria a pump system that pushes tetracycline out of their cells before it can kill them, while the sul1 gene allows bacteria to continue essential functions even when sulfonamide antibiotics try to interfere. What makes this particularly worrying, is that these genes can be horizontally transferred to other bacteria. They can be copied and shared between bacteria, spreading resistance like a viral video on social media.
Why This Matters to You
You might wonder why findings from 2014-2015 in Nigeria matter today. The answer lies in understanding how antibiotic resistance works and spreads. When bacteria in water sources carry resistance genes, they can end up in the food chain through various pathways. For instance, when contaminated water is used for irrigation and animal husbandry, they ultimately end up in our bodies when we eat such food. This creates a vicious cycle where resistance spreads across environmental, animal, and human health domains. There are other implications such as higher treatment costs for ill individuals, longer hospital stays, increased chance of mortality, and greater economic burden on families.
The One Health Connection
This research exemplifies the "One Health" approach, which recognizes that human, animal, and environmental health are connected inextricably. The same antibiotics used carelessly in human medicine, animal farming, and even agriculture create selection pressure that allows resistant bacteria to thrive everywhere.
In Kaduna State, some communities' water sources contained bacteria susceptible to all antibiotics, while others harbored multi-drug resistant strains. These differences likely reflect local patterns of antibiotic use, sanitation infrastructure quality, and environmental contamination levels.
Practical Solutions
The researchers propose several actionable solutions that communities can implement. They include boiling drinking water since Salmonella is heat-sensitive, protection of water sources such as the proper construction of wells far away from latrines, and improved sanitation. Open defecation must be discouraged as it is a major way such bacteria get into water bodies and antibiotic stewardship must also be taken seriously. The populace must be educated on the use of antibiotics only on professional advice, and completing the course of treatment as these help reduce spread of resistance among bacteria. Water sources should also be tested periodically for contamination and resistant bacteria.
Looking Forward
While this data is now a decade old, it provides crucial baseline information. The presence of resistance genes in 2014-2015 means these genes were already circulating in environmental reservoirs long before many current interventions began. The researchers call for urgent follow-up surveillance to assess whether resistance patterns have intensified and whether any interventions implemented over the past decade have made a difference. This historical data becomes invaluable for tracking trends and evaluating the effectiveness of public health measures.
The Bigger Picture
This study from Kaduna State is a microcosm of a global crisis. The World Health Organization projects nearly 2 million deaths annually from bacterial antibiotic resistance by 2050. Water sources serve as both reservoirs and highways for resistance genes, making environmental monitoring essential to any comprehensive response strategy. Addressing antibiotic resistance requires coordinated action across healthcare, agriculture, environmental management, and public education. The genes detected in these water samples are warnings we cannot afford to ignore.
Follow the Topic
-
BMC Microbiology
This is an open access, peer-reviewed journal that considers articles on all microorganisms - bacteria, archaea, algae and fungi, viruses, unicellular parasites and helminths.
Related Collections
With Collections, you can get published faster and increase your visibility.
Current trends and future directions in mycology
Fungi are a diverse ubiquitous group of eukaryotic organisms, comprising e.g. unicellular yeasts as well as multicellular filamentous microorganisms and mushrooms. They exhibit remarkable morphological and ecological diversity and fulfil a wide array of biological and ecological roles as pathogens, decomposers, and mutualists. The field of mycology, dedicated to the study of fungi, has gained increasing importance in recent years, owing to both the beneficial and harmful impact of fungi on human health, agriculture, and the environment.
Recent advances in next generation sequencing, multi-Omics technologies, molecular biology and bioinformatics have significantly enhanced our understanding of the biology and ecology of fungi, as well as the complex interactions within fungal communities and their habitat. Research and innovation in fungal biotechnology have led to the development of antifungal agents, biocontrol methods, and the application of fungi in bioremediation and sustainable biofuel production. Meanwhile, research on fungal ecology has deepened our knowledge of the impact of fungi on ecosystem functioning and the implications of climate change on fungal diversity and distribution.
In support of United Nations’ Sustainable Development Goal 3 (SDG 3, Good Health and Well-Being), BMC Microbiology launches the Collection Current trends and future directions in mycology. This Collection invites contributions to current research and future perspectives in mycology, covering a wide range of topics e.g., related to the fungal ecological roles and response to environmental changes, as well as novel biotechnological applications of fungi. Research without a clear focus on fungi, fungal communities, or host-fungi interactions will not be considered. We invite researchers and experts in the field to submit research articles covering a broad range of topics, including, but not limited to:
Molecular mechanisms in the development and pathogenesis of fungi
Parasitic fungi as models to study host-pathogen interactions
Taxonomy and phylogeny of fungi, with particular interest in poorly studied habitats and extreme environments
Resolving species complexes and generic concepts of speciose fungal genera
The role of saprotrophic fungi in nutrient cycling and ecosystem functioning
Diversity and ecological significance of endophytic fungi for plant health
Ectomycorrhizal and arbuscular mycorrhizal fungi
Impact of climate change on the distribution and function of fungal communities
The potential of fungal secondary metabolites for novel drug discovery
Mechanisms of antifungal drug resistance in pathogenic fungi
Mycotoxins in food security
Applications of fungal enzymes for sustainable industrial applications
Mechanisms of mechanosensing and fungal contact sensing
All manuscripts submitted to this journal, including those submitted to collections and special issues, are assessed in line with our editorial policies and the journal’s peer review process. Reviewers and editors are required to declare competing interests and can be excluded from the peer review process if a competing interest exists.
Publishing Model: Open Access
Deadline: Jan 30, 2026
One Health approach: zoonotic disease and microbiome research
The One Health integrated approach acknowledges ‘the interdependence of animal, human and environmental health’, emphasizing the necessity for collaboration across various disciplines and research areas to tackle global health challenges related to infectious and zoonotic diseases. This is even more relevant due to factors like climate change, urbanization, unsustainable agricultural practices and globalization that contribute to the rise of new and re-emerging infectious diseases.
The transmission of zoonotic pathogens can greatly impact not only the public human health, but also the health of domestic and wild animals. A better understanding of zoonotic microbial pathogens and the interaction with their hosts is critical to reveal how zoonotic diseases function and spread, as well as how they could possibly be controlled. In the context of One Health approach, the microorganisms inhabiting different hosts and the environment should also be studied as interconnected microbial communities or ecosystems. Understanding the interactions between microorganisms/microbiomes, the human and animal health, and the environment, has potential for developing novel approaches to infectious disease diagnosis, treatment and control.
In support of United Nations’ Sustainable Development Goal 3 (SDG 3, Good Health and Well-Being), BMC Microbiology launches the collection One Health approach: zoonotic disease and microbiome research. This collection aims to explore research on emerging and re-emerging zoonotic infections (e.g. pathogenesis, pathogen-host interactions, detection, diagnosis, treatment and control), as well as on microbial communities, in the context of One Health approach. Research without a clear focus on microorganisms, host-microorganism interactions and/or microbiomes, as well as implications for One Health approach, will not be considered. We invite researchers and experts in the field to submit research articles covering a broad range of topics including, but not limited to:
Zoonotic infections (viral, parasitic, bacterial and fungal pathogens), their impact on human and animal health, and their potential for disease outbreaks
(Re-)emerging zoonotic diseases and surveillance strategies
One Health approach in clinical microbiology research
One Health approach and the role of microbial communities and microbiomes
Microbiome sharing between animals and humans
Effects of climate change on zoonotic infections
Antimicrobial resistance within the One Health framework
Epidemiology of zoonoses in changing environments
Zoonotic disease outbreak response and prevention
Bidirectional transmission of clinically important pathogens between companion animals and their owners
All manuscripts submitted to this journal, including those submitted to collections and special issues, are assessed in line with our editorial policies and the journal’s peer review process. Reviewers and editors are required to declare competing interests and can be excluded from the peer review process if a competing interest exists.
Publishing Model: Open Access
Deadline: Jan 30, 2026
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in