Clinician Engineers – The future of healthcare

On Sep 22nd, 2021, Dr. Neel Sharma, Queen Elizabeth Hospital Birmingham, UK, gave a talk entitled "Clinician Engineers - The future of healthcare" as part of the SN Applied Sciences (springer.com/snas) webinar series.

Published in Sustainability

Clinician Engineers – The future of healthcare
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

In this blog, Dr. Sharma highlights the importance of building such a cohort of professionals in the future healthcare landscape.

Engineering solutions are the basis of diagnosis and management. Take the case of a young newly diagnosed colitis patient. While we ensure to take a thorough history and physical exam, our minds are also processing how quickly we can get a CT (computerised tomography) scan and endoscopy. As clinicians what would you feel comfortable with as diagnostic measures, a physical exam alone? Unlikely.

Engineering is guiding the way. And this is not just true for digestive diseases, across all specialties; engineering platforms are now the gold standard. Our acute kidney injury patients being filtered, our hypoxic pneumonia patients being ventilated, our cardiac patients being stented; the list is limitless. Of course, there is always a divide and debate mentality in medicine. Many seniors may shudder at the thought of rapid technology diffusion into medical practice. Yet they probably would admit to the fact they would be glad of its availability if they became unwell. And as healthcare providers, we know for sure, the public are always keen for engineering-based solutions. Yet something is amiss.

Robust measures need to be in place to ensure that clinicians and technologies understand each other – the dawn of the clinician engineer. Recent key technologies that are expected to be transformative include for instance optics, wearable sensors and artificial intelligence to name but a few. Full integration of such technologies requires clinicians with broad engineering expertise. The ability to understand the fundamentals of how medical technologies work could enable specialists to evaluate the efficacy of medical devices and provide essential feedback. Specialists with technical knowledge can be gatekeepers for medical devices that may seem to be technologically innovative but provide no significant outcomes in clinical settings. Understanding differences in technology platforms can also allow for the identification of device failures. The ability to understand medical device technologies can also create an ecosystem for clinician engineers as entrepreneurs. With the emergence of the Clinician Engineer the critical thinking and appreciation of engineering principles in medical practice can move forward.

The recording of the SN Applied Sciences webinar is available at https://youtu.be/ODG5UAtuUzE. The SN Applied Sciences Topical Collection The Clinician Engineer, guest edited by Dr. Neel Sharma, is open for submissions through https://link.springer.com/collections/beddgejace.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Sustainability
Research Communities > Community > Sustainability

Related Collections

With Collections, you can get published faster and increase your visibility.

Chemistry: Applied Phytochemistry: Characterization, Extraction, and Applications in Food, Pharmaceutical, and Agriculture

Phytochemicals are secondary metabolites distributed in the plant kingdom, and some can also be obtained from animal and fungal sources. These metabolites can be classified into alkaloids, saponins, flavonoids, phenolic acids, terpenes, and essential oils. Many of them have been associated with health-promoting effects in humans, as potential biocide agents to mitigate the use of chemical pesticides in agriculture, or as biostimulants in different crops. Due to the many applications of phytochemicals new techniques and optimization strategies are being studied. This topical collection deals with articles related to the characterization techniques and emerging and new extraction methodologies of phytochemicals from different sources. It also comprises the application of phytochemicals in the formulation of functional foods, nutraceuticals, bio-pharmaceuticals, and agriculture as biocides or biostimulants.

Publishing Model: Open Access

Deadline: May 01, 2026

Engineering: Research and Technology Innovations in Industrial Engineering

The Collection aims to present the latest achievements in automation strategies, digitalization, and process efficiency improvement, with particular emphasis on sustainable practices. It covers topics related to modern technologies used in industrial engineering, innovations in production management, and the use of data analysis in improving the efficiency of production systems. It aims to discover the future generation in manufacturing by implementing smart technologies, intelligent systems using up-to-date approaches, and modern software based on IoT, VR/AR, ANN, GA, etc. These technologies allow using data and information throughout the entire life cycle of the product and ensure the creation of flexible production processes that rapidly respond to challenges in demand at low cost to the enterprises as well as to the environment.

This Collection supports and amplifies research related to: SDG 9, SDG 12

Publishing Model: Open Access

Deadline: Dec 31, 2025