Flexible iontronics based on 2D nanofluidic material

Through the regulation of asymmetric charge transport in 2D nanofluidic channels of graphene oxide, highly efficient osmotic power source is fabricated. A paradigm for the application of nanostructured material to effectively control ion transport/gradient is proposed for integrated energy system.

Published in Materials

Flexible iontronics based on 2D nanofluidic material
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

In contemporary electronic devices dominated by semiconductors, Moore's Law has approached the limit of human processing capability, however, even the most sophisticated electronic devices today are still difficult to achieve the energy efficiency of single-celled organisms for environmental perception. From the energy conversion of ATP in living organisms to the skin's receptors for temperature and touch, all rely on efficient iontronic (ion-electron coupling) interfaces. How to use nanostructured materials of different dimensions to construct iontronics with tunable ion transport is an important scientific issue.

Recently, Prof. Di Wei and Prof. Zhonglin Wang 's team from Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences have reported a high-efficiency osmotic power source by regulating the transport of asymmetric charges in 2D nanofluidic channels of graphene oxide (GO). Its volumetric energy density is close to that of lithium-ion thin-film batteries, and its volumetric power density is close to that of supercapacitors, with overall thickness of only 10 microns. Coupled with a triboelectric nanogenerator (TENG), an ultra-thin energy harvesting and storage system is integrated, and the overall thickness of the integrated device (including the encapsulation layer) is within 200 microns. 2D nanomaterials and nano-architectured technology based on quantum confinement superfluid enable many chemical reactions that require high temperature or physical phenomena that require extremely low temperature to occur at room temperature. This work proposes a paradigm for the effective regulation of ionic transport by applying nanostructured materials, and it is helpful to study the coupling relationship between electronic and ionic signals at the ion-electron transducing interface. Osmotic power is widespread in the ocean, and this work demonstrates an efficient integration interface between energy harvesting (TENG) and energy storage devices. Through further study on solid-liquid contact electrification and mechanism on electrical double layer formation, it will be possible to open up new vistas to develop high-performance integrated energy harvesting and storage device for the blue energy. The result was published in the recent Nat. Commun. titled "Flexible iontronics based on 2D nanofluidic material".

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Materials Science
Physical Sciences > Materials Science

Related Collections

With Collections, you can get published faster and increase your visibility.

Women's Health

A selection of recent articles that highlight issues relevant to the treatment of neurological and psychiatric disorders in women.

Publishing Model: Hybrid

Deadline: Ongoing

Advances in neurodegenerative diseases

This Collection aims to bring together research from various domains related to neurodegenerative conditions, encompassing novel insights into disease pathophysiology, diagnostics, therapeutic developments, and care strategies. We welcome the submission of all papers relevant to advances in neurodegenerative disease.

Publishing Model: Hybrid

Deadline: Dec 24, 2025