Intracellular Staphylococcus aureus persisters upon antibiotic exposure

Published in Microbiology
Intracellular Staphylococcus aureus persisters upon antibiotic exposure

Share this post

Choose a social network to share with, or copy the shortened URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Staphylococcus aureus is a major cause of hospital-acquired infections. Some of these infections tend to persist in spite of the use of antibiotics that are reported as active against the infecting strain by routine laboratory testing. A reason for this persistence could reside in the capacity of the bacteria to survive within the host cells, where they are less accessible and less responsive to antibiotics. 
In this work, we examined the response of S. aureus internalized by J774 macrophages, taken as a model of permissive cells, to antibiotics belonging to different pharmacological classes. We show that a small proportion of phagocytized bacteria are capable to survive intracellularly during antibiotic exposure. These survivors display all the characteristics of the so-called persisters. These are phenotypic variants that exhibit a transient non-growing state when followed at the single-cell level, as well as antibiotic tolerance, characterized by a markedly slowed down kill rate. This phenotype was stable but readily reversible upon antibiotic removal. These observations were extended to a series of human non-professional phagocytes like keratinocytes, epithelial cells, osteoblasts, or monocytes.
A transcriptomic analysis of these intracellular persisters exposed to the beta-lactam antibiotic oxacillin revealed a profound reorientation of metabolic pathways. Many genes involved in metabolic or proliferation processes were downregulated. Yet, bacteria remained metabolically active. ATP levels were maintained, as well as protein synthesis. The central metabolic flux was also reoriented, with a shift of carbon source from glucose to lactose and from oxidative phosphorylation to D-lactate fermentation.  
Conversely, genes involved in stress defense mechanisms were upregulated, including a transient activation of the stringent response as well as an induction of cell-wall stress, SOS and heat shock responses or of diverse antibiotic targets. These redundant adaptative responses can explain the multidrug tolerance phenotype of intracellular persisters. 
Taken together, our results indicate that intracellular persistence induced by antibiotics in permissive cells is highly plastic, and involves a series of redundant regulations, which might differentially adapt the level of dormancy as a function of the sensed level of stress. We suggest that these intracellular S. aureus persisters may constitute a reservoir that may reactivate and cause relapses of infection, possibly contributing thereby to therapeutic failures.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Subscribe to the Topic

Life Sciences > Biological Sciences > Microbiology

Related Collections

With collections, you can get published faster and increase your visibility.

Applied Sciences

This collection highlights research and commentary in applied science. The range of topics is large, spanning all scientific disciplines, with the unifying factor being the goal to turn scientific knowledge into positive benefits for society.

Publishing Model: Open Access

Deadline: Ongoing

Materials and devices for separation, sensing, and protection

In this Collection, the editors of Nature Communications and Communications Materials welcome the submission of primary research articles that highlight the development and application of functional materials in the areas of separation, sensing, and protection.

Publishing Model: Open Access

Deadline: Jun 30, 2024