Journal Club | MOFs under pressure

Zeolitic imidazolate frameworks exhibit breathing behaviour in response to mechanical pressure
Published in Chemistry
Journal Club | MOFs under pressure
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

For years, research in the field of metal-organic frameworks primarily involved synthesising new materials from unprecedented combinations of ligands and metals, and seeing how well they could adsorb gases. Things got more exciting, at least in my opinion, when some of these materials were discovered to be dynamic — flexible enough that their lattices undergo reversible structural transitions in response to external stimuli.

MOF chemists took to exploring how far this phenomenon could stretch, looking at introducing flexibility by design, and testing framework responses to a range of physical and chemical stimuli. The most studied dynamic MOFs remain those whose pores breathe upon guest adsorption/desorption, taking on open pore (or large pore) versus closed pore (or narrow pore) configurations. Phase transitions triggered by mechanical stimuli, on the other hand, are much less common, and only the MIL-53/MIL-47 family (developed and studied by the late, great Gérard Férey), whose lozenge-shaped channels are well-placed to contract anisotropically under mechanical pressure, have boasted such transformations.

Now, Sebastian Henke at TU Dortmund and colleagues discover that mechano-switching behaviour extends to some members of the zeolitic imidazolate framework family. The team took to the Diamond Light Source synchrotron in the UK and investigated the responses of ZIF-4(Zn) and ZIF-4(Co) to mechanical pressure inside a diamond anvil cell, using synchrotron powder X-ray diffraction and mercury intrusion measurements. Interestingly, this isn’t the first time that such experiments have been performed on ZIF-4(Zn), but fully evacuating guest molecules from the material now leads to a previously-unobserved phase transition. This time, Henke and team find that the framework undergoes an almost isotropic unit cell contraction at 28 MPa, decreasing in volume by ~21%. This transition sees the framework transform from an open pore phase with continuous porosity to a closed pore phase with inaccessible porosity.

Surprisingly, ZIF-4(Zn) and ZIF-4(Co) demonstrate major differences in their responses. The ZIF-4(Co) transition requires a pressure of 50 MPa to be initiated, and fully returns to the open phase after decompression. The closed pore phase of ZIF-4(Zn), on the other hand, requires heating at 130 °C to revert back to the open framework. These behavioural differences are ascribed to the nature of the ligand-to-metal bonding, which in turn differs as a result of the respective electronegativities and electron configurations of the Zn2+ and Co2+ cations.

As well as these mechanically-induced structural changes being fundamentally interesting to study, the team estimated a gravimetric entropy change of 300 J K-1 kg-1 for the ZIF-4(Zn) phase transition, which could make these MOFs competitive for applications in mechanocalorics, where current benchmark materials typically exhibit gravimetric entropy changes of ∼100–150 J K-1 kg-1.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Chemistry
Physical Sciences > Chemistry

Related Collections

With collections, you can get published faster and increase your visibility.

Advances in catalytic hydrogen evolution

This collection encourages submissions related to hydrogen evolution catalysis, particularly where hydrogen gas is the primary product. This is a cross-journal partnership between the Energy Materials team at Nature Communications with Communications Chemistry, Communications Engineering, Communications Materials, and Scientific Reports. We seek studies covering a range of perspectives including materials design & development, catalytic performance, or underlying mechanistic understanding. Other works focused on potential applications and large-scale demonstration of hydrogen evolution are also welcome.

Publishing Model: Open Access

Deadline: Sep 18, 2024

Cancer epigenetics

With this cross-journal Collection, the editors at Nature Communications, Communications Biology, Communications Medicine, and Scientific Reports invite submissions covering the breadth of research carried out in the field of cancer epigenetics. We will highlight studies aiming at the improvement of our understanding of the epigenetic mechanisms underlying cancer initiation, progression, response to therapy, metastasis and tumour plasticity as well as findings that have the potential to be translated into the clinic.

Publishing Model: Open Access

Deadline: Oct 31, 2024