Plant Extinction vs. Plant Speciation in the Anthropocene

In this Review article, we clarified the mechanisms of speciation and extinction, where the plant speciation occurs, and why we will lose more plant species in this and the following centuries.
Published in Ecology & Evolution
Plant Extinction vs. Plant Speciation in the Anthropocene

Read the paper

BioMed Central
BioMed Central BioMed Central

Plant extinction excels plant speciation in the Anthropocene - BMC Plant Biology

Background In the past several millenniums, we have domesticated several crop species that are crucial for human civilization, which is a symbol of significant human influence on plant evolution. A pressing question to address is if plant diversity will increase or decrease in this warming world since contradictory pieces of evidence exit of accelerating plant speciation and plant extinction in the Anthropocene. Results Comparison may be made of the Anthropocene with the past geological times characterised by a warming climate, e.g., the Palaeocene-Eocene Thermal Maximum (PETM) 55.8 million years ago (Mya)—a period of “crocodiles in the Arctic”, during which plants saw accelerated speciation through autopolyploid speciation. Three accelerators of plant speciation were reasonably identified in the Anthropocene, including cities, polar regions and botanical gardens where new plant species might be accelerating formed through autopolyploid speciation and hybridization. Conclusions However, this kind of positive effect of climate warming on new plant species formation would be thoroughly offset by direct and indirect intensive human exploitation and human disturbances that cause habitat loss, deforestation, land use change, climate change, and pollution, thus leading to higher extinction risk than speciation in the Anthropocene. At last, four research directions are proposed to deepen our understanding of how plant traits affect speciation and extinction, why we need to make good use of polar regions to study the mechanisms of dispersion and invasion, how to maximize the conservation of plant genetics, species, and diverse landscapes and ecosystems and a holistic perspective on plant speciation and extinction is needed to integrate spatiotemporally.

Following my last post, “Let’s drink up this glass of species wine!” (, we successfully published that opinion/perspective article in a decent journal BMC Plant Biology:

These days, more and more people are concerned about the increased plant diversity somewhere in the world. Meanwhile, we are on the age of the “sixth mass extinction”, both have lots of evidence. However, I found all the questions could not be addressed in one paper, thus I want to contribute one Review article on this topic: plant speciation vs. extinction in the Anthropocene.

In this Review article, we clarified the mechanisms of speciation and extinction, where the plant speciation occurs and why we will lose more plant species in this and the following centuries. In which areas on the Earth are easier to form new plant species? What are the current ways of plant extinction? In the context of climate change, is plant speciation more dominant than plant extinction? (Fig. 1) At last, we gave four insightful research directions. These are fundamental questions in plant science and sustainability research, which need a critical and thorough review. We believe, the timely publication of such a review article would be a great thing for the plants’ conservation.

Remarkably, we have cited 150 papers in this review which have a very large research dimension, including evolution, ecology, plant biology, climate change and paleobotany and etc. I am so happy to read these exciting research articles, reviews and perspectives that laid a solid foundation (truth, evidence and opinions etc.) for our review article. Just like “stand on the shoulders of giants”, probably, the most thanked people are the authors of those cited literatures in the text.

Fig. 1. A simplified conceptual model depicting the types of plant speciation and the drivers of plant extinction in the Anthropocene. Three identified plant speciation accelerators, i.e., cities, polar regions, and botanical gardens are illustrated to show how climate warming might change plant evolution in the future. The contribution to plant speciation displayed from the top to bottom are: autopolyploid speciation, allopolyploid speciation, and chromosomal rearrangements. The main drivers of plant extinction displayed from left to right are: habitat loss, deforestation, land use change, climate change, and pollution. The solid lines denote the biological and ecological processes of plant speciation and extinction, in which the green ones denote the corresponding speciation types, and the red ones denote the five drivers of plant extinction. The thickness of the arrow denotes the relative strength of the contributions. It should be noted that climate change accelerates plant speciation while drives plant extinction either, and human population increase as the primary driver of plant extinction. Both new plant species and their progenitors of plant species may face the same extinction risk in the Anthropocene, but the new plant species are more likely to survive due to their stronger natural adaptability to climate change.


Gao, J.G., Liu, H., Wang, N., Yang, J. & Zhang, X.-L. (2020) Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology 20: 430.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Subscribe to the Topic

Life Sciences > Biological Sciences > Ecology

Related Collections

With collections, you can get published faster and increase your visibility.

Multi-omics approaches for plant disease diagnosis and resilience

In nature, plants are constantly exposed to microorganisms and pests, some of which can be pathogenic. Plant diseases can have a strong environmental and economic impact, and represent a major threat to food security due to crop yield losses. This is especially true under the extreme weather conditions associated with climate change, which affect the response of plants to abiotic and biotic stress, including infectious diseases. The occurrence and spreading of plant diseases demand major efforts to understand how and why the pathogenesis occurs, and improve the available strategies for plant disease diagnosis, management and resistance. BMC Plant Biology announces the launch of the collection ‘Multi-omics approaches for plant disease diagnosis and resilience’. We invite submissions of manuscripts on novel research and applications where multi-omics methods are applied to improve disease diagnosis and resilience in plants. This collection aims to highlight the importance and potential challenges of developing and integrating multi-omics technologies to take a holistic approach on plant pathogenesis, plant disease diagnosis and control, and ultimately plant disease resistance.

Publishing Model: Open Access

Deadline: Mar 22, 2024

Plants and Their Pathogens

Plant pathogens have been implicated with severe losses in crop yield, thus affecting food security for the growing human population. With increasing importance given to cultivating and sustaining crops for agriculture and the food industry, and preventing the spread of plant pathogens, understanding the molecular mechanisms underlying plant-pathogen interactions, both in the host plant and the infecting pathogen, is paramount. With implications for the United Nation’s Sustainable Development Goals (SGDs) 2 (Zero hunger), 12 (Sustainable consumption and production), 13 (Climate action) and 15 (Life on land), BMC Biology together with BMC Plant Biology and BMC Microbiology would like to acknowledge this fast-growing area of research with the launch of the ‘Plants and their Pathogens’ collection.

Publishing Model: Open Access

Deadline: Jan 31, 2024