System with Thermal Management for Synergistic Water Production, Electricity Generation and Crop Irrigation

System with Thermal Management for Synergistic Water Production, Electricity Generation and Crop Irrigation
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Explore the Research

SpringerLink
SpringerLink SpringerLink

System with Thermal Management for Synergistic Water Production, Electricity Generation and Crop Irrigation - Nano-Micro Letters

Sustainable water, energy and food (WEF) supplies are the bedrock upon which human society depends. Solar-driven interfacial evaporation, combined with electricity generation and cultivation, is a promising approach to mitigate the freshwater, energy and food crises. However, the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather. This study proposes an integrated water/electricity cogeneration–cultivation system with superior thermal management. The energy storage evaporator, consisting of energy storage microcapsules/hydrogel composites, is optimally designed for sustainable desalination, achieving an evaporation rate of around 1.91 kg m−2 h−1. In the dark, heat released from the phase-change layer supported an evaporation rate of around 0.54 kg m−2 h−1. Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination, enabling the long-running WEC system to achieve a power output of ~0.3 W m−2, which was almost three times higher than that of conventional seawater/surface water mixing. Additionally, an integrated crop irrigation platform utilized system drainage for real-time, on-demand wheat cultivation without secondary contaminants, facilitating seamless WEF integration. This work presents a novel approach to all-day solar water production, electricity generation and crop irrigation, offering a solution and blueprint for the sustainable development of WEF.

As global water, energy and food demands intensify under climate change, a scalable, round-the-clock technology that simultaneously produces fresh water, electricity and irrigation water is urgently needed. Now researchers from Harbin Institute of Technology, Wuhan University and Tsinghua University—led by Prof. Shih-Hsin Ho—have unveiled an integrated Water/Electricity-Cogeneration–Cultivation (WEC) platform that couples solar-driven desalination with salinity-gradient power generation and zero-pollution crop irrigation. The work offers a practical blueprint for advancing the water–energy–food (WEF) nexus toward carbon-neutral sustainability.

Why WEC Matters

  • 24 h Operation: An energy-storage hydrogel evaporator (ESE) sustains 1.91 kg m-2 h-1 evaporation under 1 sun and 0.54 kg m-2 h-1 in darkness, eliminating daylight-only bottlenecks.
  • Triple Electricity Gain: Reverse electrodialysis (RED) harvests ~0.30 W m-2 from desalination-enhanced brine—three-fold higher than conventional seawater/river-water RED.
  • Zero-Discharge Irrigation: System drainage irrigates wheat seedlings (shoot ≈ 87 mm, root ≈ 80 mm within 7 d) without secondary contaminants, closing the WEF loop.
  • Carbon Offset: One-year operation offsets 1,362.52 kg CO2e, equivalent to burning 1,172 m3 of natural gas.

Innovative Design & Features

  • Thermal-Management Evaporator: PVA hydrogel embedded with n-octadecane microcapsules stores daytime waste heat and releases it after sunset, extending effective evaporation by ~1 h.
  • Bio-Graphene Photothermal Layer: Super-hydrophobic surface (153° WCA) on melamine sponge enables rapid solar-thermal localization (>49 °C) while inner hydrophilic networks pump water continuously.
  • Salinity-Gradient Engine: Desalination continuously boosts brine concentration (3.5 → 5.8 wt%), driving RED open-circuit voltage from 175 to 221 mV and stabilizing power at 0.3 W m-2.
  • Mechanical Durability: 30 thermal cycles and 21-day continuous operation show no performance decay; compressive strength ~0.19 MPa with full shape recovery.

Applications & Future Outlook

  • All-Weather Water–Power Coupling: Field tests under natural light/dark cycles deliver 9.37 kg m-2 fresh water and 0.29 W m-2 electricity per day—30 % more water than non-storage controls.
  • Irrigation without Salt Stress: Drainage Na+ (552.8 mg L-1) is <1/60 of seawater; wheat germination and biomass match surface-water controls, validating safe reuse.
  • Carbon-Neutral Potential: Daytime electricity generation contributes 54 % of total GHG offsets; thermal management alone adds 349 kg CO2e yr-1(26 % bonus).
  • Scalability Roadmap: Efficiency can be further lifted via hierarchical water channels, >95 % light-absorbing metamaterials, aerogel insulation and thinner ion-exchange membranes.

This comprehensive study demonstrates that synergistic thermal engineering, desalination and salinity-energy recovery can simultaneously tackle water scarcity, clean-electricity deficits and food irrigation. It provides a readily deployable, low-cost route toward resilient WEF security and global carbon-neutrality goals. Watch for more advances from Prof. Shih-Hsin Ho’s team at Harbin Institute of Technology!

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Gels and Hydrogels
Physical Sciences > Materials Science > Soft Materials > Gels and Hydrogels
Materials for Energy and Catalysis
Physical Sciences > Materials Science > Materials for Energy and Catalysis
Solar Thermal Energy
Technology and Engineering > Mechanical Engineering > Mechanical Power Engineering > Solar Thermal Energy
Mechanical and Thermal Energy Storage
Technology and Engineering > Mechanical Engineering > Mechanical Power Engineering > Mechanical and Thermal Energy Storage
  • Nano-Micro Letters Nano-Micro Letters

    Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, and pharmacy.