About Richard Lewis
Experienced Postdoctoral Research Associate, Chartered Chemist and Senior Team Leader working within the Cardiff Catalysis Institute, Cardiff University.
Popular Content
Details
Online Elsewhere
-
LinkedIn
Cookies
We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website. You can decide for yourself which categories you want to deny or allow. Please note that based on your settings not all functionalities of the site are available.
Further information can be found in our privacy policy.
Cookie Control
Customise your preferences for any tracking technology
The following allows you to customize your consent preferences for any tracking technology used to help us achieve the features and activities described below. To learn more about how these trackers help us and how they work, refer to the cookie policy. You may review and change your preferences at any time.
These trackers are used for activities that are strictly necessary to operate or deliver the service you requested from us and, therefore, do not require you to consent.
These trackers help us to deliver personalized marketing content and to operate, serve and track ads.
These trackers help us to deliver personalized marketing content to you based on your behaviour and to operate, serve and track social advertising.
These trackers help us to measure traffic and analyze your behaviour with the goal of improving our service.
These trackers help us to provide a personalized user experience by improving the quality of your preference management options, and by enabling the interaction with external networks and platforms.
Recent Comments
Hi Isatou,
Many thanks for the question. The reactive oxygen species (ROS) are highly energetic and will individually have a lifetime on the order of nanoseconds. The lifetime of any residual H2O2, which has some (limited) anti-microbial properties will last somewhat longer, no longer than a few minutes, depending on environmental conditions (pH / temperature / presence of salts in the water etc ). This is one of the major advantages of this approach compared to chlorination, no toxic chemical residues!
The ROS are generated over the catalyst through reaction between very dilute streams of H2 and O2, rather than being cleaved from the catalyst surface, so as long as both gases are supplied constantly, under ideal conditions, the catalyst will continually generate ROS.
Hi Isatou,
Thanks for these comments.
Theoretically the resources required to generate the ROS should not be prohibitive and would consist of air (to provide O2), water and electricity, with H2 generated from water splitting. This technology really could use water to treat water! The concentration of H2 used by our system is comparable to that generated by any commercially available electrolyser, run from a generator or even renewable sources.
Your point about changes in water quality and the need for continual monitoring, for example after a storm event or an accidental spill, is something we have considered and indeed is an area that many water treatment companies are pursuing. Thankfully there seem to be a number of affordable, remote water quality management systems available commercially.
The use of superoxide in biotherapy is definitely an interesting topic and there is currently a wide field of research investigating the use of superoxide for the safe treatment of tumours. Our catalytic materials can definitely be modified to deliver tumour targeting species in situ, at a desirable rate.
Best wishes,
Rich
Hi Isatou,
Many thanks for the question. The reactive oxygen species (ROS) are highly energetic and will individually have a lifetime on the order of nanoseconds. The lifetime of any residual H2O2, which has some (limited) anti-microbial properties will last somewhat longer, no longer than a few minutes, depending on environmental conditions (pH / temperature / presence of salts in the water etc ). This is one of the major advantages of this approach compared to chlorination, no toxic chemical residues!
The ROS are generated over the catalyst through reaction between very dilute streams of H2 and O2, rather than being cleaved from the catalyst surface, so as long as both gases are supplied constantly, under ideal conditions, the catalyst will continually generate ROS.