Behind the Paper

The real stories behind the latest research papers, from conception to publication, the highs and the lows

The quasi-linear nearby Universe

Cosmology is the science of the largest possible scales - temporal and spatial. Yet, the last two decades have seen the rise of a new approach, coined as near field cosmology, which advocates that studies of the ‘near field’, namely our local ‘patch’ of the Universe, can teach us about the Universe at large. Our paper presents a new approach to cosmography - the non-linear mapping of the total matter distribution of the local Universe, out to distances of roughly half a billion lightyears by means of constrained simulations. The paper brings the previously separated approaches: linear cosmography and massively non-linear simulations, and amalgamates them into one - the quasi-linear reconstruction of the near field. The Constrained Local UniversE Simulations (CLUES) project operates within this context. It aims at mapping - in space and time - the near field from observational data and within the framework of the standard model of cosmology. The data consists of the Cosmicflows database of galaxy distances and velocities and the essence of the standard model, namely a flat universe made of dark energy (Λ) and cold dark matter (the “ΛCDM” model). How local is ‘local’ is context dependent – for simulations such as those in the CLUES it ranges from scales as small as our Milky Way galaxy out to distances of roughly a billion lightyears from us.
Go to the profile of Noam Libeskind
Jul 09, 2018

Nature Reviews Disease Primers on Influenza. Not just another review on influenza, but a CEIRS review.

When Nature Reviews Disease Primers asked me to assemble a group of experts to write an article summarizing influenza disease, I immediately thought of bringing together scientific members from the Centers of Excellence in Influenza Research and Surveillance (CEIRS) to talk about the different aspects of the virus biology and pathogenesis, the disease, the existing countermeasures, and the possible future solutions to eliminate the burden that influenza virus imposes in human and animal health.
Go to the profile of Adolfo García-Sastre
Jul 08, 2018

Synthesis and Imaging of Polyynes on Surface.

Carbyne, the elusive sp-hybridized linear allotrope of carbon, is a controversial material (Fig. a). It has fascinated scientists for decades because it ought to exist but all claims of its synthesis and identification in meteorites have turned out to be dubious. Many attempts have been made to prepare structures consisting exclusively of sp-carbon, either in linear or cyclic form. However, their inherent instability in a pristine form seems to result in immediate decomposition under standard conditions. Linear polyynes with enormous end-capping protective groups are, so far, the best isolable model system for carbyne. Wesley Chalifoux and Rik Tykwinski managed to make the longest known linear polyyne with 44 sp carbon atoms (22 consecutive triple bonds, Nature Chem. 2010, 2, 967). The Fritsch-Buttenberg-Wiechell (FBW) rearrangement is a valuable synthetic tool in the synthesis of these long molecular wires. In this rearrangement the 1,1-dibromoolefin is transformed undergoing a 1,2-shift to an acetylene upon treatment with a strong reducing agent (Fig. b).
Go to the profile of Przemyslaw Gawel
Jul 02, 2018