Copper(I)-catalyzed diastereo- and enantio-selective construction of optically pure exocyclic allenes

Published in Chemistry
Copper(I)-catalyzed diastereo- and enantio-selective construction of optically pure exocyclic allenes
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Chiral allene moieties exist in about 150 natural products and a variety of functional synthetic compounds1-3. Due to the unique structural features and versatile reactivity of allenes, significant applications have been found not only in medicinal chemistry and material science, but also as important intermediates in synthetic transformations, and chiral ligands or catalysts in asymmetric catalysis. Among these identified allenic natural products, the exocyclic allenes constitute a major subclass, such as Neoxanthin, Grasshopper ketone, Citroside A, and fungal metabolite A82775C.

Substantial efforts are devoted to the construction of axially chiral allenes, however, the strategies to prepare chiral exocyclic allenes are still rare. Herein, we show an efficient strategy for the asymmetric synthesis of chiral exocyclic allenes with the simultaneous control of axial and central chirality through copper(I)-catalyzed asymmetric intramolecular reductive coupling of 1,3-enynes to cyclohexadienones. This tandem reaction exhibits good functional group compatibility and the corresponding optically pure exocyclic allenes bearing cis-hydrobenzofuran, cis-hydroindole, and cis-hydroindene frameworks, are obtained with high yields (up to 99% yield), excellent diastereoselectivities (generally >20:1 dr) and enantioselectivities (mostly >99% ee). Furthermore, a gram-scale experiment and several synthetic transformations of the chiral exocyclic allenes are also presented.

In a word, this work describes a copper-catalyzed asymmetric synthesis of exocyclic allenes by simultaneous control of axial and central chirality. 

References:

  1. Krause, N. & Hashmi, A. S. K. Modern allene chemistry (Wiley, 2004).
  2. Hoffmann-Röder, A. & Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. 43, 1196–1216 (2004).
  3. Yu, S. & Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem. Int. Ed. 51, 3074–3112 (2012).

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Chemistry
Physical Sciences > Chemistry

Related Collections

With collections, you can get published faster and increase your visibility.

Applications of Artificial Intelligence in Cancer

In this cross-journal collection between Nature Communications, npj Digital Medicine, npj Precision Oncology, Communications Medicine, Communications Biology, and Scientific Reports, we invite submissions with a focus on artificial intelligence in cancer.

Publishing Model: Open Access

Deadline: Mar 31, 2025

Biology of rare genetic disorders

This cross-journal Collection between Nature Communications, Communications Biology, npj Genomic Medicine and Scientific Reports brings together research articles that provide new insights into the biology of rare genetic disorders, also known as Mendelian or monogenic disorders.

Publishing Model: Open Access

Deadline: Apr 30, 2025