HIV affects polyamine metabolism and T cell lineages

How HIV induces alterations in polyamine metabolism and could affect T cells and their functions in the oral mucosa of HIV-infected individuals.
Published in Healthcare & Nursing
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Polyamines are organic polycations that work together with DNA, RNA, and proteins, and control cell growth and death. Polyamines come from food and can be produced by our cells and the microbiome in our mucosa. Aberrant changes in their levels in cells are associated with aging and diseases. A study by Dr. Pandiyan's team at Case Western Reserve University has explored polyamines' role in HIV infection and has shown that HIV could damage our immune system by increasing T-cell polyamine metabolism. (Nature Communications; DOI 10.1038/s41467-023-36163-2; https://doi.org/10.1038/s41467-023-36163-2 or https://www.nature.com/articles/s41467-023-36163-2.pdf).

Mechanistic studies using an in vitro human tonsil organoid infection model revealed that HIV infection of T cells also resulted in increased polyamine synthesis, which was dependent on the activities of caspase-1, IL-1β, and ornithine decarboxylase-1 (ODC-1). HIV-1 also led to a heightened expression of polyamine synthesis intermediates including ODC-1 as well as an elevated dysfunctional regulatory T cell (TregDys) /T helper 17 (Th17) cell ratios. The loss of Th17 cells was due to pyroptotic cell death. Blockade of caspase-1 and polyamine synthesis intermediates reversed the TregDys phenotype showing the direct role of polyamine pathway in altering T cell functions during HIV-1 infection.  Lastly, oral mucosal TregDys/Th17 ratios and CD4 hyperactivation positively correlated with salivary putrescine levels, which were found to be elevated in the saliva of HIV+ patients. The anti- or hyper-inflammatory effect of altered polyamines on other innate immune cells and the role of increased NLRP3 expression remain to be studied in the future. Thus, by revealing the role of excessive polyamine synthesis during HIV infection, this study unveils a mechanism by which chronic viral infections could drive distinct T cell effector programs and Treg dysfunction.

This study could lead to new therapeutic approaches to repair the immune system that is damaged due to aging, chronic infections, inflammation, and cancer.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Health Care
Life Sciences > Health Sciences > Health Care

Related Collections

With collections, you can get published faster and increase your visibility.

Advances in catalytic hydrogen evolution

This collection encourages submissions related to hydrogen evolution catalysis, particularly where hydrogen gas is the primary product. This is a cross-journal partnership between the Energy Materials team at Nature Communications with Communications Chemistry, Communications Engineering, Communications Materials, and Scientific Reports. We seek studies covering a range of perspectives including materials design & development, catalytic performance, or underlying mechanistic understanding. Other works focused on potential applications and large-scale demonstration of hydrogen evolution are also welcome.

Publishing Model: Open Access

Deadline: Sep 30, 2024

Cancer epigenetics

With this cross-journal Collection, the editors at Nature Communications, Communications Biology, Communications Medicine, and Scientific Reports invite submissions covering the breadth of research carried out in the field of cancer epigenetics. We will highlight studies aiming at the improvement of our understanding of the epigenetic mechanisms underlying cancer initiation, progression, response to therapy, metastasis and tumour plasticity as well as findings that have the potential to be translated into the clinic.

Publishing Model: Open Access

Deadline: Oct 31, 2024