Making a nano-movie using liquid-cell transmission electron microscopy

Published in Chemistry
Making a nano-movie using liquid-cell transmission electron microscopy
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

It all started when we got together with my colleague Kathryn Grandfield and we talked about how important it would be to apply liquid cell transmission electron microscopy (TEM) to study relevant biological systems. Calcium phosphate biomineralization immediately came to mind. This is an essential process in the formation of bones and teeth. It is important in pathological calcification like the formation of kidney stones, and knowing more about the process can guide us in engineering bio-inspired materials.

In the work published in Communications Chemistry, we used liquid cell TEM to study calcium phosphate mineralization from stimulated body fluid. Under low-beam imaging conditions, we were able to create a nano-movie that showed the structural evolution of calcium phosphate, directly in liquid, with nanoscale spatial resolution and sufficient temporal resolution. The nano-movie demonstrated that calcium phosphate mineralizes through a non-classical pathway, by the formation of pre-nucleation particles and aggregative growth forming chain-like or branched morphologies. This study demonstrates the feasibility of studying biological processes in their native liquid environment with nanoscale resolution using liquid-cell TEM

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Chemistry
Physical Sciences > Chemistry

Related Collections

With collections, you can get published faster and increase your visibility.

Fluorescent probes for bioimaging and biosensing

This Collection aims to offer insights and inspiration for the development of fluorescent probes for biological imaging and sensing. We encourage submissions that focus on design strategies and rational response mechanisms, electronic and spectral characteristics, and biological applications as powerful tools for chemical biology.

Publishing Model: Open Access

Deadline: Mar 31, 2025

Advances in catalytic hydrogen evolution

This collection encourages submissions related to hydrogen evolution catalysis, particularly where hydrogen gas is the primary product. This is a cross-journal partnership between the Energy Materials team at Nature Communications with Communications Chemistry, Communications Engineering, Communications Materials, and Scientific Reports. We seek studies covering a range of perspectives including materials design & development, catalytic performance, or underlying mechanistic understanding. Other works focused on potential applications and large-scale demonstration of hydrogen evolution are also welcome.

Publishing Model: Open Access

Deadline: Mar 31, 2025