Who's a Bonehead? Novel Insights into Evolutionary History from Reptilian Skull Roof Structure

Through investigating the reptile skull roof by means of high-resolution computed tomography (µCT), we unveiled a hitherto unknown case of convergent evolution and provide novel insights into the lifestyle of extinct species.

Published in Ecology & Evolution

Who's a Bonehead? Novel Insights into Evolutionary History from Reptilian Skull Roof Structure
Like

Share this post

Choose a social network to share with, or copy the URL to share elsewhere

This is a representation of how your post may appear on social media. The actual post will vary between social networks

Explore the Research

BioMed Central
BioMed Central BioMed Central

First evidence of convergent lifestyle signal in reptile skull roof microanatomy - BMC Biology

Background The study of convergently acquired adaptations allows fundamental insight into life’s evolutionary history. Within lepidosaur reptiles—i.e. lizards, tuatara, and snakes—a fully fossorial (‘burrowing’) lifestyle has independently evolved in most major clades. However, despite their consistent use of the skull as a digging tool, cranial modifications common to all these lineages are yet to be found. In particular, bone microanatomy, although highly diagnostic for lifestyle, remains unexplored in the lepidosaur cranium. This constitutes a key gap in our understanding of their complexly interwoven ecology, morphology, and evolution. In order to bridge this gap, we reconstructed the acquisition of a fossorial lifestyle in 2813 lepidosaurs and assessed the skull roof compactness from microCT cross-sections in a representative subset (n = 99). We tested this and five macroscopic morphological traits for their convergent evolution. Results We found that fossoriality evolved independently in 54 lepidosaur lineages. Furthermore, a highly compact skull roof, small skull diameter, elongate cranium, and low length ratio of frontal and parietal were repeatedly acquired in concert with a fossorial lifestyle. Conclusions We report a novel case of convergence that concerns lepidosaur diversity as a whole. Our findings further indicate an early evolution of fossorial modifications in the amphisbaenian ‘worm-lizards’ and support a fossorial origin for snakes. Nonetheless, our results suggest distinct evolutionary pathways between fossorial lizards and snakes through different contingencies. We thus provide novel insights into the evolutionary mechanisms and constraints underlying amniote diversity and a powerful tool for the reconstruction of extinct reptile ecology.

Why are terrestrial vertebrates so highly diverse? In times of anthropogenic change and mass extinctions, this key question to evolutionary research is more relevant than ever. We often attribute this phenomenon to modifications in accordance with different environments and lifestyles. However, it is not always easy to reconstruct from the fossil record how historic key events determined the destinies of entire lineages millions of years ago. Therefore, 160 years after Darwin's theory of evolution, our understanding of certain evolutionary mechanisms remains incomplete.

In order to better understand the complex interrelations between vertebrate lifestyle, form, and evolution, we looked into the skull roof structure of squamate reptiles i.e., lizards and snakes. We wanted to understand to what extent their bone structure reflects certain lifestyles. Although many of these reptiles use their skulls as a digging tool, this question has never been systematically investigated. In our paper First Evidence of Convergent Lifestyle Signal in Reptiles Skull Roof Microanatomy, we therefore employed computer simulations to reconstruct the evolution of a specialised burrowing lifestyle over a period of 240 million years. Remarkably, we found that burrowing evolved independently in 54 squamate lineages. These reptiles are therefore particularly well suited as a model system for the study of convergent evolution.

Scincoid lizards, such as this representative from the Australian east coast, are among the most diverse squamates – both ecologically and taxonomically. Nonetheless, we were surprised to identify 20 independent acquisitions of a specialized burrowing lifestyle in this clade alone. Photo by Roy Ebel.

In the second phase of our study, we compared the skull roof structure of lizards and snakes in accordance with their lifestyles. To this end, we made use of high-resolution computed tomography (micro-CT) for the 3D visualisation of bone tissue and employed a new, effective protocol for data analysis. Doing this, we achieved a large sample size, allowing us to draw conclusions about the entire squamate reptilian clade with over 11,000 species. We found that burrowing lizards and snakes have repeatedly evolved a particularly dense and compact skull roof in independent evolutionary processes. We further identified typical proportions of both the skull and between the skull roof bones as convergently evolved modifications associated with this lifestyle.

This desk at the CT-Vis-Lab of the Museum für Naturkunde Berlin says quite a bit about our working routine. From right to left: VG Studio MAX for processing 3D-volumes acquired with µCT, ImageJ for processing extracted slices, and R-Studio for the analysis of convergence and lifestyle signal. As a coincidence, the stages of data reduction correlate with decreasing screen size. ...and who would have thought that this is how a biologist's workspace may look like? Photo by Roy Ebel.

In our study, we present a novel case of convergent evolution: in different lineages, very similar structures have independently evolved in response to a common lifestyle. Such similarities reflect a certain function, in this case burrowing, and may therefore provide little information on the phylogenetics relations between the considered taxa. Nonetheless or precisely therefore, the knowledge of these processes is of outstanding importance: by means of skull roof structure, we can now reconstruct the lifestyle of reptiles that became extinct millions of years ago. Our findings thus cast completely new light on the evolutionary history of certain lineages. This may particularly apply to snakes, for which both an aquatic and burrowing origin have been controversially discussed for decades. Our work now adds to a growing body of evidence for the latter. Having said this, our findings may also have important implications beyond squamate reptiles. A burrowing lifestyle has likely played a key role in the evolutionary history of turtles and certain amphibians. Recent studies even suggest that the mammalian stem lineage may not have survived the largest mass extinction in earth's history at the end of the Permian about 250 million years ago without adopting a burrowing lifestyle. It is therefore invaluable to understand such historical lifestyle transitions.

This little critter is a rare burrowing gymnophthalmid lizard from Brazil, which quickly became a lab favourite for its happy smile. We were able to include the specimen in our dataset due to a loan from the American Museum of Natural History (AMNH R64876). In total, our dataset comprises specimens from 13 herpetological collections worldwide. Photo by Roy Ebel.

Should our work have sparked your interest in the fascinating field of squamate skull morphology and its implications for their ecology and evolution, you may be pleased to hear that we uploaded the µCT-scans employed in our study into the Data Repository of the Museum für Naturkunde Berlin. They will thus be available for future research projects worldwide.

Please sign in or register for FREE

If you are a registered user on Research Communities by Springer Nature, please sign in

Follow the Topic

Ecology
Life Sciences > Biological Sciences > Ecology
  • BMC Biology BMC Biology

    This is an open access journal publishing outstanding research in all areas of biology, with a publication policy that combines selection for broad interest and importance with a commitment to serving authors well.

Related Collections

With collections, you can get published faster and increase your visibility.

Genome organization and evolution

BMC Biology is calling for submissions to our Collection on Genome organization and evolution. Genome organization and evolution represent critical fields of study in understanding the fundamental principles that govern biological diversity and the structure-function relationships of genomes. This Collection aims to explore the intricate architecture of genomes, including the role of topologically associating domains, transposable elements, and structural variations in shaping evolutionary trajectories. Insights into the mobilome, subgenome dynamics, and sequence homology are increasingly informing our understanding of how genomes evolve, adapt, and respond to environmental stresses.

The exploration of genome organization has far-reaching implications for various biological disciplines, including evolutionary biology, ecology, and medicine. Recent advances in genomics technologies, such as long-read sequencing, pangenomics methods, and broadly accessible advanced computational approaches, have revolutionized our ability to analyze complex genomic structures and variation. Understanding these processes is essential for addressing pressing issues like biodiversity loss, species conservation, and the evolution of drug resistance, ultimately contributing to the sustainability of ecosystems and human health.

Continued research in this area will lead to groundbreaking discoveries about the mechanisms of genome evolution and organization, including the identification of novel genomic elements and the elucidation of their functional roles. This could pave the way for new biotechnological applications, improve crop resilience, and enhance our understanding of disease mechanisms and pathogen transmission through the study of genomic structural variation.

Potential topics for submission include, but are not limited to:

Functional and evolutionary impacts of whole-genome duplication

Structural variation and genome architecture

Evolution of transposable elements and simple repeats

Role of topologically associating domains in evolution

Phylogenetics and genome organization

Genome instability and diseases

This Collection supports and amplifies research related to SDG 14: Life Below Water, and SDG 15: Life on Land.

All manuscripts submitted to this journal, including those submitted to collections and special issues, are assessed in line with our editorial policies and the journal’s peer review process. Reviewers and editors are required to declare competing interests and can be excluded from the peer review process if a competing interest exists.

Publishing Model: Open Access

Deadline: Dec 26, 2025

Organoids: advancements in normal development and disease modeling, and Regenerative Medicine

BMC Biology is calling for submissions to our Collection on Organoids: advancements in normal development and disease modeling, and Regenerative Medicine. This Collection seeks to bring together cutting-edge research on the use of organoids as models of normal organ development and human disease, as well as transplantable material for tissue regeneration and as a platform for drug screening.

Studies can be based on organoids derived from either induced pluripotent stem cells or tissue-derived cells (embryonic or adult stem cells or progenitor or differentiated cells from healthy or diseased tissues, such as tumors).

We welcome submissions focusing on studies investigating the mechanisms of self-organization and cellular differentiation within organoids, and how these processes recapitulate human tissue architecture and pathology. We are especially interested in studies addressing the issues of improving tissue patterning, specialization, and function, and avoiding tumorigenicity after transplantation of organoids. We will also consider studies that demonstrate the application of organoids in personalized medicine, such as drug screening, toxicity testing, and the identification of novel therapeutic targets.

We are interested in studies focusing on the refinement of methods to enhance the fidelity and functional maturity of organoids, especially those integrating organoid models with cutting-edge technologies such as advanced imaging, single-cell and spatial omics, microfluidic chip systems and bioprinting.

This Collection supports and amplifies research related to SDG 3: Good Health and Well-Being.

All manuscripts submitted to this journal, including those submitted to collections and special issues, are assessed in line with our editorial policies and the journal’s peer review process. Reviewers and editors are required to declare competing interests and can be excluded from the peer review process if a competing interest exists.

Publishing Model: Open Access

Deadline: Sep 15, 2025