Challenges related to mRNA stability and immunogenicity, as well as in vivo delivery and the ability to cross multiple biological barriers, have been largely addressed by recent progress in mRNA engineering and delivery.
mRNA nanomedicines have already shown efficacy as vaccines for the prevention of COVID-19 and reducing the risk of hospitalization and death3,27,28,29. Encouraged by this success, more and more mRNA-based vaccines and therapies are expected to reach clinical translation. However, several crucial goals must be reached before the potential of mRNA nanomedicines is fully realized. Increasing evidence suggests that specific biological pathways may interfere with mRNA delivery or translation195,196. Thus, understanding how biological pathways affect in vivo mRNA delivery and translation can further improve the efficacy of mRNA drugs, while the potential toxicity and immune response raised by mRNAs and their carriers should also be carefully considered.
Ultimately, the quick and efficient implementation of mRNA nanomedicines depends largely on their stability and logistical requirements, which impact real-world implementation and rollout. Therefore, innovations that improve stability will be crucial. In recent studies, a thermostable mRNA vaccine was reported to provide protective efficacy against SARS-CoV-2 in mice197 and entered clinical trials198. Moderna’s next-generation COVID-19 vaccine mRNA-1283 could be stable at 2–5 °C.
New engineering advanaces will facilitate real-world applications of mRNA nanomedicines in myriad ways. For example, novel PLGA microparticles could be a promising platform for mRNA delivery with programable drug release and even enable self-boosting vaccines199,200,201. In addition, microneedle patches, which have demonstrated their safety and immunogenicity as carriers for seasonal influenza202 and SARS-CoV-2 (refs. 203,204) vaccines, could be a convenient and minimally invasive platform for mRNA delivery.
Since the enormous potential of mRNA nanomedicines has already been demonstrated by the unprecedented mRNA COVID-19 vaccines, we expect that continued innovation will lead to new and highly efficient mRNA-based therapies, including vaccines for other non-COVID-19 infectious diseases, cancer immunotherapy, protein therapy, gene-editing-based therapy and potentially many others.
Related reading:https://orcid.org/0000-0001-7114-1095
https://www.nature.com/articles/s41591-022-02061-1
https://www.nature.com/articles/s41565-022-01174-5
https://www.nature.com/articles/s41467-022-28744-4
https://www.nature.com/articles/s41565-021-01040-w
https://www.nature.com/articles/s41467-021-25075-8
https://www.nature.com/articles/s41467-021-24961-5
https://www.nature.com/articles/s41467-021-21436-5
https://www.nature.com/articles/s41578-020-00247-y
https://www.nature.com/articles/s41467-019-12462-5
https://bioengineeringcommunity.nature.com/posts/tackling-covid-19-with-materials-science https://bioengineeringcommunity.nature.com/posts/micropatterned-microfluidics-dendronized-fluorosurfactants-for-highly-stable-emulsions https://bioengineeringcommunity.nature.com/posts/nature-derived-2-dimensional-materials-for-cancer-therapy-and-sustainable-solutions https://bioengineeringcommunity.nature.com/posts/multi-targeted-reactive-oxygen-species-burst-for-cancer-therapy
Related Cancer Theranostics works:
- D Gao, T Chen, Y Han, S Chen, Y Wang, X Guo, H Wang, X Chen, M Guo, Y Zhang, G Hong, X Zhang*, Z Tian*, Z Yang*. Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-independent Synergistic Photothermal-thermodynamic Therapy. Nano-Micro Letters, 2021,13, 99. (Featured Cover Paper)
- Y Yang, X Wei, N Zhang*, J Zheng, Q Wen, X Luo, C Lee, X Liu, X Zhang*, J Chen, C Tao, W Zhang*, X Fan*. A non-printed integrated-circuit textile for wireless theranostics. Nature Communications. 2021, 12, 4876.
- X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, N Kong,* X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 1124.
- N Kong, H Zhang, C Feng, C Liu, Y Xiao, X Zhang, L Mei, J S Kim, W Tao, X Ji. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications. 2021, 12, 4777.
- Z Tang†, N Kong†, X. Zhang†, Y Liu, P Hu, S Mou, P Liljeström, J Shi, W Tan, J S Kim, Y Cao, R Langer, K W. Leong, O C. Farokhzad, W Tao. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860. (Featured Cover Paper, highly cited paper, accessed>20,000 times)
- J Li, S Song, J Meng, Z Li, X Liu*, L Tan, Y Zheng, C Li, K Yeung, Z Cui, Y Liang, S Zhu, X Zhang*, S Wu*. 2D MOF periodontitis photodynamic ion therapy. Journal of the American Chemical Society, 2021, 143, 37, 15427-15439. (Selected for“A Virtual Issue on Nanomedicine” collection papers from ACS Nano and JACS)
- Y Wang, D Gao, Y Liu, X Guo, S Chen, L Zeng, J Ma, X Zhang*, Z Tian*, Z Yang*. Immunogenic-Cell-Killing and Immunosuppression-Inhibiting Nanomedicine. Bioactive Materials, 2020, 6 (6), 1513-1527.
- J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Progress in Materials Science, 2021, 118, 100768.
- Z Yang, D Gao, X Guo, L Jin, J Zhang, Y Wang, S Chen, X Zheng, L Zeng, M Guo, X Zhang*, Z Tian*. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged ACS Nano, 2020, 14, 12, 17442-17457.
- D Wei, Y Yu, Y Huang,1 Y Jiang, Y Zhao, Z Nie, F Wang, W Ma, Z Yu, Y Huang, X Zhang, Z Liu, X Zhang, H Xiao. A Near-Infrared-II Polymer with Tandem Fluophores Demonstrates Superior Biodegradability for Simultaneous Drug Tracking and Treatment Efficacy Feedback. ACS Nano, 2021, 15 (3), 5428–5438.
- D Wei, Y Yu, X Zhang, Y Wang, H Chen, Y Zhao, F Wang, G Rong, W Wang, X Kang, J Cai, Z Wang, J Yin, M Hanif, Y Sun, G Zha, L Li, G Nie, H Xiao*. Breaking down the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano, 2020, 14, 12, 16984-16996.
- Z Lei, W Zhu, X Zhang, X Wang, P Wu. Bio-inspired ionic skin for theranostics hydrogel. Advanced Functional Materials, 2020, 2008020.
- D Gao, X Guo, X Zhang*, S Chen, Y Wang, T Chen, G Huang, Y Gao, Z Tian*, Z Yang*. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio. 2019, 5,100035. (Invited Paper, ESI highly cited paper, open access with a fee waiver, 99.983% excellence, 2nd most highly cited paper of Materials Today Bio)
- J Ouyang†, X Ji†, X Zhang†, C Feng, Z Tang, N Kong, A Xie, J Wang, X Sui, L Deng, Y Liu, J S Kim, Y Cao, W Tao*. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020, 117 (46), 28667-28677. (highly cited paper, Highlighted by: MRS Bulletin Materials News)
- G Parekh, Y Shi, J Zheng, X Zhang*, S Leporatti. Nano-carriers for targeted delivery and biomedical imaging enhancement. Therapeutic Delivery, 2018, 9(6), 451-468.
- C Liu, S Sun, Q Feng, Y Wu, N Kong, Z Yu, J Yao, X Zhang, W Chen, Z Tang, Y Xiao, X Huang, A Lv, Y Cao, A Wu, T Xie, W Tao. Arsenene Nanodots with Selective Killing Effects and their Low‐Dose Combination with ß‐Elemene for Cancer Therapy. Advanced Materials, 33(37) (2021) 2102054.
- W Y Kim, M Won, S Koo, X Zhang, J S Kim. Mitochondrial H2Sn-Mediated Anti-Inflammatory Theranostics. Nano-Micro Letters, 2021, 13, 168.
Other Related Nature-derived/inspired materials/tea works:
- C Liu, S Sun, Q Feng, Y Wu, N Kong, Z Yu, J Yao, X Zhang, W Chen, Z Tang, Y Xiao, X Huang, A Lv, Y Cao, A Wu, T Xie, W Tao. Arsenene Nanodots with Selective Killing Effects and their Low‐Dose Combination with ß‐Elemene for Cancer Therapy. Advanced Materials, 33(37) (2021) 2102054.
- Y Xie, J Yin, J Zheng, L Wang, J Wu, M Dresselhaus, X Zhang*. Synergistic cobalt sulfide/eggshell membrane carbon ACS Applied Materials & Interfaces. 2019, 11 (35), 32244-32250.
- N Kong, H Zhang, C Feng, C Liu, Y Xiao, X Zhang, L Mei, J S Kim, W Tao, X Ji. Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications. 2021, 12, 4777.
- X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, N Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021,12,1124.
- Z Li, D Chu, Y Gao, L Jin*, X Zhang*, W Cui, J Li*. Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite Materials Today Advances. 2019,3,100014. (Invited open-access paper among most highly cited paper of Materials Today Advances)
- Z Lei, W Zhu, X Zhang, X Wang, P Wu. Bio-inspired ionic skin for theranostics hydrogel. Advanced Functional Materials, 2020, 2008020.
- L Jin, J Li, L Liu*, Z Wang*, X Zhang*. Facile synthesis of carbon dots with superior sensing. Applied Nanoscience, 2018, 755(3), 1-8.
- J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Progress in Materials Science, 2021, 118, 100768.
- Z Yang, D Gao, X Guo, L Jin, J Zhang, Y Wang, S Chen, X Zheng, L Zeng, M Guo, X Zhang*, Z Tian*. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged ACS Nano, 2020, 14, 12, 17442-17457.
- Y Wang, L Lu, G Zheng*, X Zhang*. Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano, 2020, 14(8), 9861-9872. (Featured Cover Paper)
- Z Li†, X Zhang†, Z Guo, L Shi, L Jin, L Zhu, X Cai, J Zhang, Y Liu, Y Zhang, J Li. Nature-Derived Bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Materials Today Advances, 2021, 11, 100150.
- X Chen, Y Chen, L Zou, X Zhang, Y Dong, J Tang, D McClements, W Liu. Plant-based Nanoparticles Consisting of a Protein Core and Multilayer Phospholipid Shell: Fabrication, Stability, and Journal of Agricultural and Food Chemistry, 2019, 67 (23), 6574-6584.
- P Tang, D Shen, Y Xu, X Zhang*, J Shi, J Yin*. Effect of fermentation conditions and the tenderness of tea leaves on the chemical components and sensory quality of fermented juice. Journal of Chemistry, 2018, 4312875,1-7.
- X Zhang*. Tea and cancer prevention. Journal of Cancer Research Updates, 2015, 4 (2), 65-73.
- Q Zhang, W Li, K Li, H Nan, C Shi, Y Zhang, Z Dai, Y Lin, X Yang, Y Tong, D Zhang, C Lu, L Feng, C Wang, X Liu, J Huang, W Jiang, X Wang, X Zhang, Eichler, Z. Liu, L. Gao. The Chromosome-Level Reference Genome of Tea Tree Unveils Recent Bursts of Non-autonomous LTR Retrotransposons in Driving Genome Size Evolution. Molecular plant 2020,13 (7), 935-938.
- Y Yang†, P Jin†, X Zhang†, N Ravichandran, H Ying, C Yu, H Ying, Y Xu, J Yin, K Wang, M Wu, Q New epigallocatechin gallate (EGCG) nanocomplexes co-assembled with 3-mercapto-1-hexanol and ß- lactoglobulin for improvement of antitumor activity. Journal of Biomedical Nanotechnology, 2017,13 (7), 805-814.
- X Zhang*, G Parekh, B Guo, X Huang, Y Dong, W Han, X Chen, G Polyphenol and Self-Assembly: Metal Polyphenol Nanonetwork for Drug Delivery and Biomedical Applications. Future Drug Discovery, 2019, 1 (1), FDD7. (Invited open-access paper with a fee waiver, most cited paper of the journal)
Related 2-dimentional/carbon materials works:
- Y Zheng, H Wei, P Liang, X Xu, X Zhang, H Li, C Zhang, C Hu, X Zhang, B Lei, W Wong, Y Liu, J Zhuang. Near-infrared-excited multicolor afterglow in carbon dots-based room-temperature phosphorescent materials. Angewandte Chemie, 2021, 202108696.
- J Li, S Song, J Meng, Z Li, X Liu*, L Tan, Y Zheng, C Li, K Yeung, Z Cui, Y Liang, S Zhu, X Zhang*, S Wu*. 2D MOF periodontitis photodynamic ion therapy. Journal of the American Chemical Society, 2021, 143, 37, 15427-15439. (Selected for“A Virtual Issue on Nanomedicine” collection papers from ACS Nano and JACS)
- G Li, C Liu, X Zhang, P Luo, G Lin, W Jiang. Highly photoluminescent carbon dots-based immunosensors for ultrasensitive detection of aflatoxin M1 residues in milk. Food Chemistry. 2021, 355, 129443.
- L Jin, X Guo, D Gao, G Tan, N Du, X Wang, Y Zhang, Z Yang*, X Zhang*. NIR-responsive MXene nanobelts for wound NPG Asia Materials. 2021,13, 24. Selected for the “Special Issue on Biomaterials and Health-care related Materials”.
- J Meng, J Li, J Liu, X Zhang*, G Jiang*, L Ma, Z Hu, S Xi, Y Zhao, M Yan, P Wang, X Liu, Q Li, J Liu, T Wu, L Mai*. Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from Doped ZnO Solid ACS Central Science, 2020, 6(8), 1431–1440.
- J Cui, J Yin, J Zheng, J Meng, M Liao, T Wu, S He, S Wei, Z Xie, H Wang, M Dresselhaus, Y Xie*, J Wu*, C Lu*, X Zhang*. Supermolecule cucurbituril subnanoporous carbon supercapacitor(SCSCS). Nano Letters, 2021, 21 (5), 2156–2164.
- J Meng, Z Liu, X Liu, W Yang, L Wang, Y Li, Y Cao, X Zhang*, L Mai*. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen Journal of Materials Science & Technology, 2020, 66, 186-192.
- F Han, S Lv, Z Li, L Jin, B Fan*, J Zhang, R Zhang, X Zhang*, L Han, J Li*. Triple-synergistic 2D material- based dual-delivery antibiosis platform. NPG Asia Materials, 2020,12,15.
- J Ouyang†, X Ji†, X Zhang†, C Feng, Z Tang, N Kong, A Xie, J Wang, X Sui, L Deng, Y Liu, J S Kim, Y Cao, W Tao*. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2020, 117 (46), 28667-28677. (highly cited paper, Highlighted by: MRS Bulletin Materials News)
- H Zhou*, Z Wang, W Zhao, X Tong, X Jin, X Zhang*, Y Yu, H Liu, Y Ma, S Li, W Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chemical Engineering Journal, 2020, 403, 126307.
- X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 1124.
- X Ji, L Ge, C Liu, Z Tang, Y Xiao, Z Lei, W Gao, S Blake, D De, X Zeng, Na Kong*, X Zhang*, W Tao*. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite: synthesis and application in cancer theranostics. Nature Communications, 2021, 12, 4777.
- J Meng, Q He, L Xu, X Zhang, F Liu, X Wang, Q Li, X Xu, G Zhang, C Niu, Z Identification of phase control of carbon-confined Nb2O5 nanoparticles towards high-performance lithium storage. Advanced Energy Materials, 2019, 9 (18), 1802695.
- J Wu, F Xu, S Li, Q, Liu, X Zhang, Q Liu, R Fu, D Wu. Porous polymers as multifunctional material platforms toward task‐specific applications. Advanced Materials, 2019, 31(4), 1802922. (Citation>145, ESI Highly Cited Paper, Invited Paper)
- B Zheng, X Lin, X Zhang, D Wu, K Matyjaszewski. Emerging functional porous polymeric and carbonaceous materials for environment treatment and energy storage. Advanced Functional Materials, 2019, 1907006. (Invited Paper)
- R Huang, X Chen, Y Dong, X Zhang*, Y Wei, Z Yang, W Li, Y Guo, J Liu, Z Yang*, H Wang*, L Jin*.
MXene composite nanofibers for cell culture and tissue engineering. ACS Applied Bio Materials. 2020, 3(4), 2125-2131.
-
J Ouyang, C Feng, X Zhang, N, Kong, W. Tao. Black Phosphorus in Biomedical applications: Evolutionary Journey from Monoelemental Materials to Composite Materials. Accounts of Materials Research. 2021, 2, 7, 489–500. (Featured Cover Paper, ACS Editors` Choice, chosen from the entire ACS portfolio).
Related micropatterned microfluidics studies:
1)https://www.nature.com/articles/s41578-020-00247-y
Imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission,material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment.
- Z Tang†, N Kong†, X Zhang†, Y Liu, P Hu, S Mou, P Liljeström, J Shi, W Tan, J S Kim, Y Cao, R Langer, K W. Leong, O C. Farokhzad, W Tao. A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860. (Featured Cover Paper, highly cited paper, accessed>19,000 times, Impact Factor:71.189)
2)https://www.nature.com/articles/s41467-019-12462-5
Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules
- M Chowdhury, W Zheng, S Kumari, J Heyman, X Zhang, P Dey, D Weitz, R Haag. Dendronized fluorosurfactants provide phenomenal droplet integrity to picolitre emulsions for therapeutics development. Nature Communications, 2019, 10, 4546 (Impact Factor:14.919).
3) https://doi.org/10.1021/acsnano.0c02701
An osmotic-pressure, pH, excretion, nutrition, gas, ionic-strength, flow-rate, and temperature (OPEN GIFT) microenvironment-controlled micropatterned microfluidic model (MMMM) for biomimetic in situ studies (BISS) in simulating the in vivo microenvironment to study in situ the stress applied to Giardia in the intestinal tract.
- Y Wang, L Lu, G Zheng*, X Zhang*. Microenvironment-controlled micropatterned microfluidic model for biomimetic in-situ studies. ACS Nano, 2020, 14(8), 9861-9872. (Featured Cover Paper, Impact Factor:15.881).
4) https://doi.org/10.1016/j.bios.2019.111597
- S Han†, Q Zhang†, X Zhang†, X Liu, L Lu, J Wei, Y Li, Y Wang, G A digital microfluidic diluter- based microalgal motion biosensor for marine pollution monitoring. Biosensors and Bioelectronics, 2019, 143, 111957 (Impact Factor:10.257).
5) https://doi.org/10.2144/btn-2019-0134
- L Liu, N Xiang, Z Ni, X Huang, J Zheng, Y Wang, X Zhang*. Step Emulsification: High throughput production of monodisperse droplets. BioTechniques, 2020, 68 (3), 114-116. (Invited Expert Paper)
6) https://doi.org/10.1016/j.nantod.2021.101152 https://authors.elsevier.com/a/1cv~x6DSyB6RP5
- S Wang, Z Shen, Z Shen, Y Dong, Y Li, Y Cao, Y Zhang, S Guo, J Shuai, Y Yang, C Lin, M Guo, X Chen*, X Zhang*, Q Huang*. Machine-learning micropattern manufacturing. Nano Today, 2021, 38 (2021), 101152. (Impact Factor:20.722)
7) https://doi.org/10.1016/j.bioactmat.2021.04.014
- Z Li†, X Zhang† J Ouyang, D Chu, F Han, L Shi, R Liu, Z Guo, G Gu, W Tao, L Jin, J Li. Ca2+-supplying black phosphorus-based scaffolds developed with microfluidic technology for osteogenesis. Bioactive materials, 2021, 6(11), 4053-4064. (Instant Impact Factor:14.093).
8) https://doi.org/10.1016/j.pmatsci.2020.100768
Microfluidic technology for Theranostics.
- J Yang†, X Zhang†, C Liu†, Z Wang, L Deng, C Feng, W Tao, X Xua, W Cui. Biologically Modified Nanoparticles as Theranostic Bionanomaterials. Progress in Materials Science, 2021, 118, 100768. (Impact Factor:39.58)
9) https://doi.org/10.1007/s40820-021-00663-x
- M Chowdhury†, X Zhang†, L Amini, A Faghani, A Singh, M Henneresse, R Haag. Functional Surfactants for Molecular Fishing, Capsule Creation, and Single-Cell Gene Expression. Nano-Micro Letters, 2021, 13, 147. (Impact Factor:16.419)
10) https://doi.org/10.1021/acs.analchem.1c00917
1. G Zheng, Q Gao, Y Jiang, L Lu, J Li,X Zhang, H Zhao, P Fan, Y Cui, F Gu, Y Wang. Instrumentation-compact digital microfluidic (DMF) reaction interface extended loop-mediated isothermal amplification (LAMP) for sample-to-answer testing of Vibrio parahaemolyticus. Analytical Chemistry, 2021, 93, 28, 9728–9736.
11) https://doi.org/10.1016/j.marpolbul.2019.04.063 https://doi.org/10.1166/jnn.2019.16752 https://doi.org/10.1109/ICSENS.2010.5690979.
- Zhang, Q., Zhang, X., Zhang, X., Jiang, L., Yin, J., Zhang, P., Han, S., Wang, Y.& Zheng, G. A feedback-controlling digital microfluidic fluorimetric sensor device for simple and rapid detection of mercury (II) in costal seawater. Marine pollution bulletin, 2019, 144, 20-27. https://doi.org/10.1016/j.marpolbul.2019.04.063
- R Yang, Z Gong, X Zhang, L Que. Single-walled carbon nanotubes (SWCNTs) and poly(3,4- ethylenedioxythiophene) nanocomposite microwire-based electronic biosensor fabricated by microlithography and layer-by-layer nanoassembly. Journal of Nanoscience and Nanotechnology, 2019,19(12), 7591-7595. https://doi.org/10.1166/jnn.2019.16752
Dr. Xingcai Zhang, Harvard/MIT Research Fellow; Science Writer/Editorial (Advisory) Board Member for Springer Nature, Materials Today, Royal Society of Chemistry, Wiley; with 5 STEM degrees/strong background in sustainable Nature-derived/inspired/mimetic materials for biomed/sensing/catalysis/energy/environment applications, with more than 100 high-impact journal publications in Nature Reviews Materials, Nature Nanotechnology, Nature Medicine, etc. https://scholar.google.com/citations?hl=en&user=2vDraMoAAAAJ&view_op=list_works&sortby=pubdate
https://orcid.org/0000-0001-7114-1095
Contact: Dr. Xingcai Zhang xingcai@mit.edu chemmike1984@gmail.com +1-2253041387 wechat:drtea1
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in