World Environment Day 2025
Published in Earth & Environment, Ecology & Evolution, and Biomedical Research
World Environment Day, established by the United Nations, is celebrated annually on 5 June to remind the world of global environmental issues, the harm caused by human activities to the environment and the need to take action to safeguard and restore our planet. To support World Environment Day, Discover Toxicology has selected four articles related to environmental toxicology that discuss human impact on the environment. We invite you to read these articles and join us in caring for environmental protection and health.

The theme for World Environment Day 2025 is “End Plastic Pollution”. Eliminating plastic pollution on Earth is a significant contribution to achieving Sustainable Development Goals. Discover Toxicology has launched a Topical Collection related to this theme: Toxicological Impacts of Microplastics in Freshwater Ecosystems. If you are doing research on this topic, we look forward to your submissions.
Submission Deadline: 31 Oct 2025
About the Journal:
Discover Toxicology, part of the Discover journals, is committed to providing a streamlined submission process, rapid review and publication, and a high level of author services at every stage. Discover Toxicology is a fully open access, peer-reviewed journal that supports multidisciplinary research developments across the field of toxicology.
Discover Toxicology is now indexed in DOAJ.
Follow the Topic
-
Discover Toxicology
This is a fully open access, peer-reviewed journal that supports multidisciplinary research developments across the field of toxicology.
Related Collections
With Collections, you can get published faster and increase your visibility.
Toxic Pesticides and Planetary Health
Pesticides have played a crucial role in modern agriculture, safeguarding crops and ensuring global food security. However, their widespread and often indiscriminate use has raised serious concerns about their long-term impact on human health and the environment. From acute poisoning cases to chronic diseases and biodiversity loss, toxic pesticides pose a complex and pressing challenge that requires urgent scientific and policy-driven solutions.
This Collection of Discover Toxicology explores the dual challenge of monitoring toxic pesticides and the mitigation of their harmful effects on the environment and human health, while promoting sustainable alternatives. We invite cutting-edge research and reviews on innovative diagnostic techniques for detecting pesticide exposure, the development of novel biopesticides, precision agriculture strategies, and policy interventions that can reduce reliance on hazardous chemicals. Key topics include:
• Advances in biomonitoring and early detection methods for pesticide-related toxicity
• Environmentally friendly pest management alternatives to toxic pesticides, such as biopesticides and integrated pest management (IPM)
• The role of nanotechnology and AI-driven approaches in the reduction of pesticides and pesticide toxicity
• Mechanistic insights into pesticide toxicity and their effects on human and ecosystem health
• Policy frameworks and regulatory strategies for toxic pesticides and transition to sustainable agricultural practices
By fostering interdisciplinary dialogue and highlighting pioneering research, this Collection aims to contribute to a future where food production is both safe and sustainable. We encourage contributions from science and industry experts working towards reducing the global burden of toxic pesticides.
Keywords: Agrochemicals; Biomonitoring; Ecotoxicology; Environmental Contamination; Human Health Impacts; Sustainable Pest Management; Toxicology
Publishing Model: Open Access
Deadline: Mar 31, 2026
Molecular Mechanisms Involved in Metal Toxicity
Human activities release toxic metals into the environment. These metals pollute the soil, air, and water, which leads to the contamination of animals and plants. For the general population, food is the main route of exposure, and metals will accumulate in various organs depending on their specificity. There is strong evidence of a link between exposure to metals and the incidence of chronic diseases. However, the cellular and molecular mechanisms of metal toxicity are far to be understood. Consequently, there is an urgent need for a more profound understanding of the impact of metal pollution on human health. This understanding is essential for alerting public authorities and implementing new strategies to prevent it.
The aim of this Collection is to present an overview of recent data on metal toxicity related to cell dysfunction and disease progression, and to propose new studies or hypothesis. This collection is expected to include a variety of studies on toxic metals to which humans may be exposed in connection with environmental pollution. A particular emphasis will be placed on elucidating the mechanisms by which these metals are transported across the plasma membrane. Additionally, the impact of intracellular accumulation of these metals on the disruption of cell function at the metabolic, genomic, or signaling pathway levels will be examined. These studies may concern cellular or integrated models.
This Collection supports and amplifies research related to SDG 3.
Keywords: metal toxicology, metal poisoning, ion channels, transporters, cell signaling pathway, chronic diseases
Publishing Model: Open Access
Deadline: Jul 01, 2026
Please sign in or register for FREE
If you are a registered user on Research Communities by Springer Nature, please sign in